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ABSTRACT 

Iron deficiency anemia continues to be a major nutritional challenge worldwide and is mainly 

caused by dependence on staple foods which are low in iron bioavailability.  In many parts of the 

world, the common bean (Phaseolus vulgaris) is an important source of iron.  Bean iron has very 

low bioavailability and household/industrial processing technologies have been shown to 

improve iron bioavailability.  In this study, iron bioavailability of 16 Ugandan bean varieties was 

determined using an in vitro digestion/Caco-2 cell culture model and modeled with respect to 

key influencing factors; phytate, polyphenol, ferritin and iron content.  The effect of extrusion 

cooking on iron bioavailability was also established.  Iron bioavailability of white seed coat bean 

varieties was significantly higher than in colored seed coat varieties. A reverse trend was 

observed in which colored varieties showed higher polyphenol content than white ones.  These 

results indicated that iron bioavailability can be indirectly screened for by seed coat color.  

Regression modeling showed that only iron and polyphenol content significantly influence iron 

bioavailability in beans.  The linear effects of polyphenol and iron decreased iron bioavailability 

while their interaction increased it.   

Extrusion cooking process variables; raw material moisture content, extruder die temperature and 

feed flow rate were optimized with respect to bean iron bioavailability, paste viscosity and 

consumer acceptability of extruded flours.  Extrusion cooking increased both iron content and 

iron bioavailability and gave consumer acceptable flours with reduced paste viscosity.  The 

increase in iron content indicates possible contamination from extruder parts and may partly 

account for the increase in bioavailability.  The optimal combination of extrusion variables was 
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15% moisture content, 120 °C die temperature and 3 kg/h feed flow rate.  Model validation 

experiments revealed that most of the responses could be reliably predicted, save for iron 

bioavailability.     
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CHAPTER 1. GENERAL INTRODUCTION AND RESEARCH 

JUSTIFICATION 

Common beans (Phaseolus vulgaris L.) are widely grown in Uganda and rank among the top 

three sources of proteins, calories and iron for the population (FAO, 2010).  Beans contain 30-

190  µg/g iron depending on variety (Graham et al., 1999; CIAT, 2008; Beebe et al., 2000) 

making them an important source of iron to populations dependent on staples for their nutrition.  

However, the bioavailability of iron in beans is very low (<5%) (CIAT, 2008; Petry et al., 2010, 

Petry et al., 2012) due to high content of polyphenols, phytic acid and fiber, factors known to 

inhibit iron absorption (Welch et al., 2000; Hu et al., 2006). These act by forming insoluble 

complexes with dietary iron in the gastro-intestinal tract thus inhibiting its absorption.  

It is for this reason that iron deficiency is the most prevalent micronutrient deficiency in the 

world (WHO, 2010), especially in populations dependent on low iron bioavailability staples, 

such as beans.  Strategies to alleviate iron deficiency include supplementation, fortification, 

biofortification and dietary diversification.  However, in spite of these efforts, iron deficiency is 

still a major nutritional problem and new strategies need to be considered in addition to what is 

currently being implemented (Micronutrient Initiative, 2004).  In the case of beans, strategies to 

improve their contribution to iron nutrition include: (1) increasing iron concentration but 

maintaining bioavailability, (2) maintaining the concentration and improving bioavailability, or 

(3) increasing both iron concentration and bioavailability.  Bouis et al. (2011) projected that to 

achieve atleast 30% Estimated Average Requirements (EAR) of iron from beans for 

nonpregnant, non lactating women (1,460 µg/day) and children 4-6 yrs (500 µg/day), iron 
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content of beans ought to be increased from the current average of 50 µg/g to 107 µg/g.  This 

assumes a daily consumption of 200 g and 100 g a day for the women and childern respectively, 

an iron bioavilability of 5% and processing losses of 15%.  Biofortification, the use of 

conventional breeding techniques or genetic engineering to enhance the micronutrient content of 

staple food crops, is already being used to increase iron content of beans (Bouis, 2003).  Using 

intra and inter specific breeding, high iron varieties (up to190 µg/g) have been used as parental 

stock and progeny with iron content of up to 150 µg/g realized (CIAT, 2008).  Though some 

studies show an increase in total absorbed iron with increase in bean iron content (Tako et al., 

2009; Tako et al., 2011) others have shown no such benefit (Donangelo et al., 2003; Petry et al., 

2012) highlighting the need to match biofortification efforts with strategies to increase iron 

bioavailability.   

On the other hand, ferritin is the major iron storage protein in beans and the associated iron has 

been shown to be as bioavailable as ferrous sulfate (Davila-Hicks et al., 2004; Lonnerdal et al., 

2006).  Thus, ferritin is hypothesized to increase iron bioavailability in staple foods such as 

beans (Lukac et al., 2009).  However, ferritin is susceptible to gastric digestion at physiological 

pH in the stomach (pH 2) and may release associated iron to interact with iron absorption 

enhancers and inhibitors (Hoppler et al., 2008) which may hamper its iron absorption promoting 

capacity.  It is thus important to determine the relative contribution of known iron absorption 

inhibitors and other dietary modifiers in order to inform breeding programs.   

Iron bioavailability can also be enhanced by food processing.  Technologies that reduce 

polyphenol and phytic acid content as well as modifying the food matrix have been shown to 
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enhance iron bioavailability by 21-50%.  These include milling, soaking, germination, dehulling 

and various heat treatments (Matella, 2005; Martín-Cabrejas, 2006; Nergiz and Gökgöz, 2007; 

Shimelis and Rakshit, 2007; Alonso et al., 2001).  Of these, extrusion cooking has been shown to 

be the most effective methodology that enhances bioavailability without loss in iron content and 

effectively destroys anti-nutritional factors in beans (lectins, hemaglutinins, enzyme inhibitors) 

(Alonso et al., 2001).  It also adds value to beans, significantly reducing cooking time and 

improving overall nutritional and sensory quality of beans.   

To study the effect of influencing factors on iron bioavailability, the Caco-2 cell culture model is 

a cost effective technique, especially when large numbers of varieties and/or processing 

conditions need to be screened (Fairweather-Tait et al., 2005).  Bioavailability is the relative 

measure of how well a nutrient is absorbed by the human body and becomes available for 

metabolic use.  When determined in vitro using the Caco-2 cell culture model, iron 

bioavailability is often expressed as relative biological availability (RBA, also known as relative 

biological value, RBV)  which is the bioavailability of the iron in a given compound/food matrix 

compared to the bioavailability of ferrous sulfate (a salt assumed to be 100% bioavailable) within 

the same experiment.   

Therefore, the current study hypothesized that an optimal combination of extrusion cooking 

parameters significantly improves iron bioavailability and consumer acceptability of promising 

bean varieties through elimination of anti-nutritional factors and enhancement of desirable 

flavor.  Two study objectives were formulated; (1) to screen for iron bioavailability in 16 

Ugandan bean varieties and model the relationship with key influencing factors; iron, 



www.manaraa.com

4 

 

 

 

polyphenol, phytic acid and ferritin content; (2) to optimize extrusion cooking variables with 

respect to iron bioavailability, sensory and physicochemical properties of the most promising 

bean variety.   

Dissertation organization  

The dissertation consists of a review of literature on the distribution of common beans and their 

nutritional importance, extrusion processing with emphasis on utility to beans; iron 

bioavailability and how it relates to bean nutrition; phyto ferritin and its relationship to iron 

bioavailability and finally the use of optimization techniques in product development.  This is 

followed by two papers in preparation for submission to the Journal of Agricultural and Food 

Chemistry.  The first paper it titled ‘White common beans (Phaseolus vulgaris) have higher in 

vitro iron bioavailability than colored seed coat varieties’.  This study modeled the relationship 

between key bean composition factors and iron bioavailability using multiple regression 

techniques.  The second paper is titled ‘Optimization of white common bean (Phaseolus 

vulgaris) extrusion cooking process.’  It involved utilization of Response Surface Methodology 

(RSM) techniques to optimize extrusion cooking conditions; raw material moisture content, 

extruder die temperature and raw material flow rate with respect to iron bioavailability, sensory, 

and physicochemical properties of extruded flour. It is then capped by a chapter on general 

conclusions from the study. 

Authors’ roles  

The authors of  “White common beans (Phaseolus vulgaris) have higher in vitro iron 

bioavailability than colored seed coat varieties”, chapter 3, are Mutambuka M, Murphy PA, 

Hendrich S and Reddy MB.  Mutambuka sourced the bean varieties, conducted Caco-2 cell 
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culture studies as well as chemical composition analysis of raw materials.  The authors of 

“Optimization of white common bean (Phaseolus vulgaris) extrusion cooking process”, chapter 

4,  are Mutambuka M, Murphy PA, Hendrich S, Reddy MB and Lamsal PB.  Mutambuka carried 

out the extrusion cooking experiments, sensory evaluation experiments, Caco-2 cell culture 

experiments and chemical composition analysis of extruded bean material.  The author of the 

concluding chapter is Martin Mutambuka. 
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CHAPTER 2. LITERATURE REVIEW  

2.1The common bean 

2.1.1 Origin, distribution and classification  

 The common bean (Phaseolus vulgaris L.) is one of the most ancient crops of the New World 

and is currently the most important grain legume for direct human consumption in the world.  It 

is a member of family Leguminosae, tribe Phaseoleae and subfamily Papilionoideae.  The 

common bean is self-pollinating, diploid and characterized by growing habits as determinate or 

indeterminate bush beans and climbing beans.  First domesticated in the upland regions of Latin 

America more than 7000 years ago, the common bean is now the most widely cultivated of all 

beans in temperate regions, and widely cultivated in semitropical regions.  Current cultivars are 

believed to have evolved from a wild growing vine.  

 

Two centers of origin for this crop have been identified as the highland regions of Mexico and 

Andean South America, each with distinct morphological, agronomic and allozyme patterns as 

well as seed protein variations (Gepts, 1988).  An analysis of banding patterns of phaseolin, the 

major seed storage protein in beans, has revealed three predominant patterns (S= Sanilac, T= 

Tender green, C= Contender) and which have been used to provide reliable information about 

the corresponding gene pools (Gepts and Bliss 1986, Gepts et al 1986).  Banding patterns were 

named after the variety in which they were discovered. The Mesoamerican gene pool is 

characterized by small seeds and type "S" while the Andean gene pool is characterized by larger 

seeds and two phaseolin types ("T" and "C").  The Mesoamerican gene pool is represented by 



www.manaraa.com

8 

 

 

 

pinto, pink, black, white and some snap beans, whereas the Andean is represented by kidney, 

cranberry and many snap beans (Talukder et al 2010).   

 

From the domestication centers, the beans spread following different routes (Gepts, 1988); the 

smaller seeded Mesoamerican lines spread through Mexico and Central America, via the 

Caribbean and northern South America to Brazil.  On the other hand, the larger-seeded Andean 

type were probably introduced into Europe via the Iberian peninsula, from where they made it 

into Africa and northeastern USA through trade and immigrations.  However, it is important to 

note that both Andean and Mesoamerican genotypes were disseminated to the same regions of 

the world.  Currently, the Centro Internacional de Agricultura Tropical (CIAT) in Cali, 

Colombia, maintains a world collection of  more than 40,000 accessions; including indigenous 

wild and weedy specimens, unimproved landraces, and pure lines of Phaseolus vulgaris, as well 

as numerous related species (CIAT, 2011). 

 

In Uganda, close to 0.5 million tons of beans are grown by 53% of the farmers (UNHS, 2005); 

making them the fifth most important food crop next to plantains, cassava, maize and sweet 

potatoes.  The per capita consumption averages 16 kg/person/year and they contribute 6% of 

daily calorie and 15% of protein intake (FAO, 2010).  However, in the southwestern part of the 

country, production and consumption are highest with beans taking on an even greater 

importance.  Indeed, the south western neighboring countries of Rwanda and Burundi have a per 

capita consumption of about 66 kg and 31 kg per year, respectively (Broughton et al., 2003). 
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There is great phenotypic and genetic diversity in terms of the market classes grown by farmers 

in Uganda and the East African Highlands in general, ranging from red mottled, red, navy, 

cream, yellow, black, purple, and brown (Wortman et al., 1998).  Red-mottled bean varieties are 

the most important and account for about 22% of total bean production.  Historically, the 

dominant gene pool in the region are Andean varieties.  However, the Mesoamerican gene pool 

is on the rise (Blair et al., 2010a) due to introduction of new improved climbing varieties (CIAT, 

2010) which are from the Mesoamerican gene pool and the root rot disease to which Andean 

varieties are less resistant.  Climbing bean varieties exhibit a higher yield in small space, large 

grains, good nitrogen fixation, reduced vulnerability to certain diseases and flexibility for various 

cropping systems.  There is also a lot of inter-gene retrogression which may be due to the fact 

that beans are often cultivated in multi-cultures.  This is a coping mechanism against biotic and 

abiotic stresses, environmental/climatic variability and with diversifying production in small 

plots, early and late maturing components are planted together providing harvestable products 

over a long period.  However, there is growing demand by the urban consumers for pure lines 

instead of mixtures since these provide more uniformity and are easier to prepare.  This, as well 

as introduction of new varieties, has threatened the existing diversity of genotypes in the region 

and reduced the genetic pool.   

 

2.2 Nutritional importance of common beans to humans 

Dry beans have been consumed since time immemorial with archeological evidence showing 

their consumption in Southeast Asia, the Middle East, Africa, the Americas, India and China 

8000 to 10000 years BP.  They offer a high nutrient-density and are a good source of starch, 



www.manaraa.com

10 

 

 

 

protein, complex carbohydrates/dietary fiber as well as vitamins (Vitamin B6 and folate), 

phytochemicals and minerals (iron, zinc, and phosphorous) as shown in Table 2.1 (USDA, 

2011).  Important health benefits include reduced disease risk; diabetes (Villegas et al., 2008), 

coronary heart disease (Kabagambe et al., 2005), certain cancers (Deneo-Pellegrini et al., 2002; 

Key et al., 1997), enhanced longevity (Darmadi-Blackberry et al., 2004), lower total cholesterol, 

LDL-cholesterol, triglycerides, while increasing HDL-cholesterol (Shutler et al., 1989; Winham 

et al., 2007).  Dietary Guidelines for Americans recommends 3 cups of beans per week (dry 

weight ~200 g). 
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Table 2.1: Nutrient composition of dry beans  

Nutrient* Composition (per 100g, dwb) 
Energy, Kcal 308 
Protein (g) 20. 8 
Total lipid (g) 1.3 
Ash (g) 3 
Carbohydrate (g) 56.9 
Total dietary fiber (g) 17.2 
Total sugars (g) 0.8 
Calcium (mg) 105.72 
Iron (mg) 6.21 
Magnesium (mg) 145.44 
Phosphorus (mg) 332.12 
Potassium (mg) 1076.8 
Sodium (mg) 43.67 
Zinc (mg) 2.23 
Copper (mg) 0.6 
Manganese (mg) 1.11 
Selenium (µg) 3.96 
Vitamin C, total ascorbic acid  (mg) 8.93 
Thiamin (mg) 0.56 
Riboflavin (mg) 0.24 
Niacin (mg) 1.76 
Pantothenic acid (mg) 0.86 
Vitamin B-6 (mg) 0.34 
Folate, total (µg) 243.81 
Choline, total (mg) 58.74 
Vitamin B-12 (µg) 0 
Vitamin A (IU) 0.21 
Vitamin E (α-tocopherol) (mg) 0.8 
Vitamin K (phylloquinone) (µg) 16.71 

*Average of black, navy, pinto, kidney, great northern and red beans. Source: 
www.nal.usda.gov/fnic/foodcomp/search 
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The following sections look at the biochemistry and physicochemical properties of cooking 

beans.  

2.2.1 Proteins 

Typically beans contain 15-30% protein on a dry weight basis.  Water-soluble albumins and salt-

soluble globulins, respectively, account for up to 10 - 30% and 45 - 70% of the total proteins 

(dwb) (Sathe et al., 1984).  Glutelins (12 - 30%) and protease inhibitors (0.3%), non-extractable 

proteins and non-protein nitrogen make up the rest.  The albumin fraction is typically composed 

of several different proteins, with phytohemagglutinin accounting for 10% of total proteins while 

a single globulin, phaseolin, dominates the globulins and may account for up to 50 to 55% of the 

total proteins (dwb).  Osborne (1894) first extracted and characterized bean protein and found 

two major globulins that required a certain amount of ionic strength for solubilization in aqueous 

media.  Later, Danielsson (1949) showed that these globulins (vicilin-like and legumin-like) had 

sedimentation coefficients of 7S and 11S, molecular weights of 186,000 and 331,000 and 

isoelectric pH of 4.8 and 5.5 respectively.   

 

The 7S vicilin type protein in beans is the major storage protein (accounting for over 50% of the 

total seed proteins) and is known as phaseolin (also variously referred to as globulin G1 fraction, 

euphaseolin, α globulin and Glycoprotein II) (Derbyshire et al., 1976).  It is regarded as an 

oligomeric protein consisting of three polypeptide subunits, α, β and γ, with a molecular weight 

distribution ranging from 43 to 53 kDa (Lawrence et al., 1994).  The group is typically composed 

of pre-proproteins of MWs in the range 50 – 75 kDa and may be glycosylated.  Both Raman 

spectroscopy (Yin et al., 2011) and circular dichroism spectroscopy (Deshpande and Damodaran, 
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1989) show that the secondary structure of native phaseolin is 50% β-sheets, 31% random coils, 

10.5% α-helixes and 8.5% β-turns.  The three-dimensional structure of bean 7S globulins has 

been determined using x-ray crystallography and shows disk shaped trimeric proteins with 

diameters of ~90 Å and thicknesses of 30 - 40 Å (Lawrence et al., 1994).  There is great genetic 

variability in expression of phaseolin and its banding patterns have been utilized to trace origin 

of bean varieties (Mesoamerican vs. Andean) (Gepts and Bliss 1986, Gepts et al 1986).  This 

variation may be attributed to the large number of genes encoding for phaseolin, the extent of 

glycosylation and posttranslational proteolytic processing of the pre-proproteins.  Mannose, 

xylose and glucosamine are the carbohydrate constituents that have been identified to be 

associated with phaseolin, and may be linked at two major sites, Asn 252 and Asn341 (Sturm et al., 

1987). 

 

Several authors have investigated the functional properties of the 7S protein fraction in beans and 

have shown its unique potential in food systems (Sathe and Salunkhe, 1981a, b; Plietz et al., 

1987, Deshpande and Damodaran, 1989; Kimura et al., 2008; Yin et al., 2011).  Uniqueness of 

functional properties of phaseolin may be related to the positions and level of glycosylation 

associated with it.  Water absorption capacity of albumins and globulins is 3.18 and 2.77 g/g 

respectively (Sathe and Salunkhe, 1981a, b) and is a function of presence of carbohydrate 

moieties and pH, increasing with increase in glycosylation and pH.  Oil holding capacity of 

albumins and globulins are 3.29 and 3.23 g/g, respectively; similar to soybean glycinin but much 

lower than β-conglycinin.  The isoelectric pH of bean proteins are in the range of pH 4-5 and 

they are more soluble at alkaline pH than at acidic pH.   
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Kimura et al., (2008) compared functional properties of 7S and 11S globulins of beans, soybean, 

pea, black cowpea, red cowpea and fava bean.  Solubility of bean 7S protein was very high and 

similar to that of soybean 7S globulin and higher than 7S globulins of the other legumes, which 

may be attributed to glycosylation of soybean and bean 7S globulins.  Salt type, pH and ionic 

strength are the most important parameters affecting bean protein solubility, with dilute alkalis 

being most effective (Sathe and Salunkhe, 1981b).  Sodium carbonate and potassium sulfate 

were the most effective salts.  The foaming and emulsifying properties of bean proteins are fair, 

with some bean varieties showing excellent surface activity (Sathe and Salunkhe, 1981a, Kimura 

et al., 2008).  7S globulins from soybean and bean gave smaller average particle sizes and thus 

better emulsifying abilities than those from pea, fava bean, and red and black cowpea, especially 

at µ=0.08 (Kimura et al., 2008).  11S globulins did not show any difference in emulsifying 

ability across the varieties and were poor emulsifiers.  Bean 7S globulin showed an excellent 

ability to form stable emulsions compared to the 11S globulins and 7S globulin from other 

legumes.  The excellent emulsion stability shown by bean 7S globulin over soybean 7S globulin 

cannot be explained by glycosylation alone, as both types show similar levels of glycosylation.  

However, the difference in the positions of the carbohydrate moieties may account for this 

anomaly.   

 

Bean 7S proteins are thermally stable compared to similar fractions from other legumes (Kimura 

et al., 2008) showing suitability for production of foods requiring high thermal stabilities.  This 

suggests that forces, which are sensitive to ionic strength, for example, hydrophobic interactions, 
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play a more important role in the maintenance of the structures of cowpea, pea, and soybean 7S 

globulins than those of bean 7S globulins.  However, hydrophobic interactions are important for 

the maintenance of the structure of bean 11S globulin.  Surface hydrophobicity of bean 7S 

protein was lowest among the legumes, showing suitability for foods requiring low surface 

hydrophobicity.  The foaming capacity and foam stability of bean globulin proteins are poor 

when compared with many animal proteins partly because they typically have compact and rigid 

structure.  The smallest gelation concentration of albumins and globulins are 18 and 20% (Sathe 

and Salunkhe, 1981a). 

 

In beans, the 11S legumin type globulins form a minor component to the protein content 

(Derbyshire et al., 1976).  The native legumins typically have sedimentation coefficients of 11 to 

13S and are not glycosylated. One polypeptide from each of the α and β subunits are linked via 

disulfide bond(s) to form a polypeptide of MW ~ 60,000 (Lawrence et al., 1994).  Six such 

polypeptides (each of MW ~ 60,000) are thought to constitute the native molecule (hexamer) 

with MWs of 320,000 to 400,000.  Typically, legumin-like proteins are not glycosylated but 

show molecular heterogeneity which may be due to the flexible region of the 11S type proteins 

that is susceptible to proteolysis (Plietz et al., 1987).  Both legumin and vicilin proteins contain 

(N-terminal) leader sequences that are removed co-translationally prior to packaging the mature 

proteins in membrane bound protein bodies.  

 

In addition to phaseolin 7S and 11S globulins, beans also contain 17 - 18S and 2~3S proteins 

which may contain aggregated and dissociated forms of the main storage proteins, respectively, 
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as well as other smaller MW proteins (Sun et al., 1974).  The 2 - 3S fraction of bean proteins 

contains many small proteins, including trypsin-chymotrypsin inhibitors and some enzymes.  

Trypsin inhibitors occur in appreciable amounts in beans and contain significant amounts of 

sulfur amino acids compared with other proteins (Grant et al., 1995).  The double headed 

Bowman-Birk type trypsin and chymotrypsin inhibitors are the most important protease 

inhibitors in beans (Lajolo and Genovese, 2002).  They are small molecular weight (MW 8-

10kDa) cystein-rich polypeptides containing a large number of disulfide bonds which makes 

them heat stable.  They consist of two binding sites located at opposite sides of the molecule and 

are able to form a 1:1:1 stoichiometric enzyme-inhibitor complex with trypsin and chymotrypsin 

(Bergeron and Nielsen1993).  Several isoforms of Bowman-Birk inhibitor (BBI) have been 

isolated from common beans (Wu et al., 1990; Bergeron and Nielsen1993).  Their heat stability 

is an important factor in protein nutritional quality since they require higher temperatures and/or 

prolonged time for inactivation.  Earlier interest in BBI was based on poor raw bean protein 

utilization by rodents and associated pancreatic hypertrophy in animals with pancreas size > 

~0.3% (as % body weight) (Grant et al., 1995).  However, pancreatic hypertrophy is not 

observed in larger animals.  Instead, an antic-carcinogenic effect has been reported in humans 

with BBI implicated in the treatment of different types of cancer (Armstrong et al., 2000).  

 

Beans also contain amylase inhibitors, notably of which are the α-amylases inhibitors (α-AI).  

Three isoforms of α-AI (α-AI1, α-AI2, α-AIL) have been isolated and characterized in beans, 

with α-AI1, the isoform with anti-amylase activity in humans, being most widely distributed 

(Iguti and Lajolo, 1991).  The α-amylase inhibitors α-AI1 and α-AI2 exist in their native form as 
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typical lectin tetramer structures (α2β2) with a molecular weight of approximately 56.7 kDa.  α-

AI have an amino acid sequence homology of about 50–90% with bean phytohemagglutinins 

(PHA) (Moreno and Chrispeels, 1989).  However, there are major differences in the number of 

surface loops in the three dimensional structures of these bean proteins (Rougi et al., 1993).  

PHA has three loops, α-AIL has one shortened loop, while the loops are completely absent in α-

AI1 and α-AI2.  Therefore, α-AI has no carbohydrate-binding activity due to lack of 

carbohydrate-binding loops that are present in PHA (Pueyo et al., 1993).  Moist heat typically 

inactivates most of the carbohydrase inhibitors and they are therefore not nutritionally important.  

 

Beans also contain lectins, also referred to as phytohemagglutinins (PHA), glycoprotein 1or 

protein II (Lis and Sharon, 1980).  Native lectins are typically tetrameric proteins (MW range 

85,000 to 150,000) and are glycosylated with sedimentation patterns similar to the vicilin-type 

proteins.  They are composed of two different types of subunits; a leucoagglutinating sub unit 

(34 kDa) and erythroagglutinating sub unit (36 kDa) (Leavitt et al., 1977).   These subunits are 

synthesized in the endoplasmatic reticulum and then randomly combined to produce five 

isolectins that are assigned the structures L4, L3E1, L2E2, L1E3, and E4.  Both bean lectin 

subunits contain the characteristic N-glycosylation sequence; subunit E at Asn12, Asn60 and 

Asn80, subunit L only at Asn12 and Asn60.  In the mature proteins, only the first two sites are 

actually glycosylated. The glycan at Asn12 belongs to the high mannose type, while glycan at 

Asn60 belongs to the complex type containing xylose and fucose (Thomas et al., 1996).  All 

legume lectins possess two bound metal ions (one calcium ion and one transition metal ion, 

mainly Mn2+) per monomer, in the vicinity of the sugar binding site.  The presence of these two 
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bound metal ions is vital for the sugar binding capabilities of the legume lectins (Bardocz et al., 

1995).  Lectins have a unique property of being able to bind disaccharides in a highly specific 

fashion (Pusztai et al., 1989).  Most animal cell membranes contain these sugar molecules.  The 

toxic activity of lectins derives from their resistance to proteolysis and ability to bind tightly to 

sugars present on cells in the small intestines causing food poisoning or long term inhibition of 

nutrient absorption (Pusztai et al., 1989).  However, heat treatment (e.g. boiling for 12 minutes) 

has been shown to completely eliminate the hemagglutinating activity, though slow heating 

below boiling point may not.  Also, fermentation for 72 h at 42 ⁰C completely removed lectins 

from lentil flour (Cuadrado et al., 2002).  Other biochemical properties of lectins are agglutination 

of erythrocytes, mitogenic activity (induction of mitosis of lymphocytes), agglutination of malignant 

cells, and specificity for human blood groups (Lis and Sharon, 1986).  They have also been shown to 

potently and selectively inhibit HIV-1 and HIV-2 in MT4-cells (Balzarini et al., 1992). 

  

Another class of bean proteins is the sulfur-rich proteins (SRPs) which are nutritionally 

important since bean protein is generally deficient in sulfur containing amino acids (Burow et al., 

1993).  They are high in methionine and account for ≤ 5% of total seed proteins. The bean SRPs 

are thought to be similar to the soybean ones and are composed of several polypeptides (MW 

range 17,000 to 45,000).  The final class of bean proteins are the enzymes (amylases, lipases, 

proteases, peptidases) bioactive peptides and small polypeptides. 

 

Nutritionally, the contribution of cooked bean protein is curtailed by relatively low digestibility 

(65 - 85%) and a low supply of sulfur amino acids, methionine and cysteine (Sathe et al., 1984; 
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Montoya et al., 2008a).  The low digestibility of bean protein may be due to the food matrix, 

protease inhibitors and resistant protein fractions.  Bean proteins are contained within cell walls 

that remain primarily intact during cooking and may enter the small intestine encased within 

fibrous cell walls, limiting access of proteases.  Bean protease inhibitors and lectins have been 

discussed in an earlier part of this section.  Digestibility of the different protein fractions also 

differs.  Montoya et al. (2008a) found that the degree of hydrolysis of 43 different types of 

phaseolin ranges from 57% to 96%.  They attributed the variations to differences in subunit 

composition, subunit precursor origin (α or β) and trypsin susceptibility between phaseolin 

subunits (Montoya et al., 2008b; Montoya et al., 2009).   For the legumin (11S) fraction, only α-

polypeptides may be partially degraded, while β polypeptides remain intact, even after heat 

treatment (Momma, 2006).  Degree of hydrolysis of cooked albumins and glutelins is very low 

(13–18%).  The low degree of hydrolysis of 2S proteins may be due to a high number of 

disulphide bridges and the presence of carbohydrates (Moreno et al., 2005).  

 

 

2.2.2 Carbohydrates 

Dry beans contain about 70% carbohydrate.  Starch (43 - 45%), non-starch polysaccharides or 

fiber (18 - 20%), α-galactosides (starchyose, verbascose, and raffinose; 3 - 5%), and sucrose (3 - 

5%) are the major types of carbohydrate.  Typically, dry bean starches contain less amylose (10-

44 %) than amylopectin (Reddy et al., 1984; Wani et al., 2010), but the percentage of amylose is 

higher than most cereal or tuber starches.  The amylose fraction of bean starch has a high degree 

of polymerization (1000 - 1200).  Bean starch predominantly exhibits a type C X-ray diffraction 
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pattern and has low rates of gelatinization but high rate of retrogradation.  The latter two 

properties predispose it to a low starch bioavailability/ glycemic index.  Further, retrograded 

starches escape digestion and provide substrate for colonic micro biota thus enhancing colonic 

health.  Also, bean starch is embedded within cell walls limiting enzyme accessibility and further 

contributing to reduced glycemic index.  

 

Bean α-galactosides are not digested in the upper part of the small intestine due to a lack of the 

enzyme, α-galactosidase and thus contribute to colonic micro biota fermentable material.  

Soaking is the most common treatment for partial elimination of these oligosaccharides and 

addition of bicarbonate enhances their removal due to the greater permeability obtained by 

partial solubilization of the cell wall (Ibrahim, 2002).  Germination for 48 h at 20 °C removes 40 

- 60% of bean oligosaccharides.  Bean fiber contains equal amounts of water soluble and 

insoluble fractions.  The most important fiber components are cellulose, hemicelluloses and 

lignin, but pectins are also present (Reddy et al., 1984).  These also contribute to fermentable 

substrate to colonic micro biota, alongside a number of other health effects such as increase fecal 

volume and thus reduce transit time, lower blood cholesterol and reduced risk of some cancers, 

cardiovascular diseases and diabetes (Flight and Clifton, 2006).  

2.2.3 Lipids 

Beans contain between 1- 3% lipid depending on variety and growth environment.  Lipids in 

beans are stored in oil bodies or sphereosomes in the cotyledon, which differ in size and relative 

abundance (Sathe et al., 1984, Holland et al., 1991, Onwuliri and Obu, 2002).  Neutral lipids are 

the predominant class of lipids and are primarily made up of triglycerides, accompanied by 
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smaller proportions of free fatty acids, sterols and sterol esters (Onwuliri and Obu, 2002).   

Phospholipids and glycolipids are also present in appreciable amounts.  The majority of the fatty 

acids are unsaturated. Oleic (7-10 %), linoleic (21-28%) and linolenic (37-54%) are the major 

unsaturated fatty acids in beans and make up 64-87% of total lipids.  

 

2.2.4 Minerals 

Beans are a significant dietary source of several essential minerals and are particularly rich in 

potassium, iron, zinc, magnesium, phosphorus, copper and manganese (Table 2.1).  Others 

include calcium and selenium.  Potassium makes up 25-30% of the mineral content of beans, 

making beans an important food with respect to heart health.  Phosphorous in beans is mainly 

associated with phytic acid and may not be bioavailable.  However, phosphorous deficiency is 

not critical in human health and thus phytates are not of concern for this particular mineral.  Zinc 

and iron are the minerals of most nutritional interest in beans since their deficiency is highly 

prevalent and beans are critical sources of these minerals.  However, the bioavailability of iron 

and zinc from beans is rather low due to presence of polyphenols and phytic acid (see section 

2.3).  Mineral content is genetically determined with Andean beans having higher iron 

concentrations and Mesoamerican higher in zinc (Islam et al., 2002).  Recent studies have 

identified quantitative trait loci (QTL) controlling iron and zinc accumulation (Blair et al., 2009, 

Blair et al., 2010b).  In regard to varieties commonly grown in East and Central Africa, inter-

gene pool introgressed genotypes tend to have higher seed iron concentration, followed by 

Andean and finally the Mesoamerican (Blair et al., 2010a).  Seed zinc content is higher in the 

Mesoamerican and lowest in Andean, with introgressed varieties in-between.  
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The CIAT germplasm bank contains beans with iron content between 30 - 190 µg/g depending 

on variety (Graham et al., 1999; CIAT, 2008; Beebe et al., 2000).  This genetic variability and 

the high iron content of related species (P. polyanthus and P. coccineus which contain up to 127 

µg/g of iron) has spurred interest in breeding for high iron varieties, a process known as 

biofortification (Bouis, 2003).  Using high iron parents, progeny with iron content of up to 150 

µg/g (almost twice the iron content of low iron content market classes) have been bred (CIAT, 

2008).   The concentration of seed micronutrients is also affected by environmental interactions 

(CIAT, 2008).  Recent work by CIAT (2008) has indicated it is possible to increase seed levels 

of Fe and Zn through addition of inorganic nitrogen, phosphorus and potassium.   

2.2.5 Vitamins 

Dry beans are an excellent source of the water-soluble vitamins thiamin, riboflavin, niacin and 

folate (Table 2.1).  The vitamin content of beans varies widely among varieties and reduces on 

cooking by 70-75% (Augustin, 1981).  The bioavailability of vitamin B6 in beans is also an area 

of interest with Gregory and Kirk (1981) suggesting the cell wall matrix and non-digestible 

polysaccharides and lignins may inhibit vitamin Vit B6 absorption.  Rockland et al. (1977) 

showed that both soaking and cooking led to significant reduction in bean water soluble 

vitamins.  Cooking however, led to the greatest loss in vitamin but depended on variety and not 

on cooking time. Up to 50% losses in vitamin were reported after soaking and cooking. 
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2.2.6 Antinutritional factors  

2.2.6.1 Phytic acid 

Phytic acid is the primary storage form of both phosphorous and inositol in plant seeds. It is a 

hexahydric cyclic alcohol and exists as the hexaphosphoric ester of myo-inositol (Figure 1).  
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Figure 2.1: Chemical structure of phytic acid (Source, Reddy and Sathe, 2001). 

 

Phytic acid, also known as myo-inositol 1,2,3,4,5,6 hexakisphosphate (IP6) or phytate when in 

salt form, is the principal inositol phosphate in plants (65- 80%) though other inositol mono and 

polyphosphates (inositol penta-(IP5), tetra- (IP4), triphosphate (IP3), diphosphate (IP2) and 

monophosphate (IP1) exist in plants (Dorsch et al 2003).  The lower ester forms may exist 

naturally but may also be products of IP6 enzymatic or non-enzymatic/thermal hydrolysis during 

food processing. Phytate accumulates in the seeds during the ripening period and the associated 

phosphorus and inositol are not utilized by monogastric animals because they lack the intestinal 

digestive enzyme phytase.  
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 Phytic acid comprises about 1-5% of legumes, cereals, oil seeds, pollens and nuts (Cheryan 

1980).  In legumes, phytate can be found in the protein bodies of the cotyledon (Schlemmer et 

al., 2009).  The anti-nutritional effect of phytate is due to its ability to forms strong, mainly 

insoluble complexes with divalent and monovalent minerals such as iron, zinc, magnesium, 

copper, calcium and potassium.  This is mainly due to its chemical structure. Phytic acid contains 

12 replaceable protons; 6 are strongly dissociated with pK of about 1.8, 2 are weak acid 

functions with a pK of 6.3 and 4 are very feebly dissociated (pK of 9.7) (Cheryan, 1980).  This 

suggests that at all pH values normally encountered in foods, phytic acid will be strongly 

negatively charged indicating tremendous potential for complexing or binding positively charged 

molecules, such as cations or proteins.  Due to its multiplicity of reactive phosphate groups, 

phytic acid can complex a cation within a phosphate group itself, between two phosphate groups 

of a molecule, or between phosphate groups of different molecules.  Thus, lower ester forms 

(IP1-IP5) bind less minerals and the complexes are relatively more soluble.  Thus, phytic acid 

strongly chelates with cations such as calcium, magnesium, zinc, copper, iron and potassium to 

form insoluble salts, adversely affecting their absorption.  Phytates also form complexes with 

proteins resulting in decreased protein solubility, enzymatic activity and proteolytic digestibility.  

However, consumption of phytates has been shown to have some favorable effects. These 

include anti-carcinogenic (Shamsuddin, 2002; Vucenik and Shamsuddin, 2003), anti-oxidant 

(Minihane and Rimbach, 2002) and reduced blood glucose response (Thompson, 1993).  Others 

include reducing cholesterol and triglycerides, prevention of renal stone development, removal 

of traces of heavy metal ions and even inhibition of HIV-1 replication (Kumar et al., 2010).  
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Phytic acid is a particularly strong inhibitor of iron absorption.  The inhibitory effect of phytic 

acid on iron absorption was first studied by Widdowson and McCance (1942) who found 

decreased iron levels in subjects who consumed brown bread instead of white bread, though the 

former provided a 50% higher iron intake.  This group and other workers went ahead to show 

inhibitory effect of phytic acid in both monogastric animals and humans and later Hallberg et al., 

(1989a) showed that this relationship was dose dependent.   Hallberg et al., (1989b) showed that 

7, 89 and 887 mg of phytic acid served to healthy male and female subjects as part of a meal 

containing 4.1 mg of iron reduced iron absorption by 18, 62 and 82% respectively.  This 

inhibitory effect could however be overcome by ascorbic acid (Hallberg et al., 1989b, 

Siegenberg et al., 1991) and EDTA (Troesch et al., 2009).  Several authors have studied phytic 

acid in common beans and show that it comprises 0.2-2.8% of seed weight (Reddy and Sathe, 

2001).  Contribution of phytic acid to inhibition of iron absorption in beans has been studied 

using both human studies (Lynch et al., 1984; Donangelo et al., 2003; Pertry et al., 2010; Pertry 

et al., 2012) and in vitro digestion/Caco-2 cell culture (Hu et al., 2006; Beiseigel et al., 2007).  

However, the relative contribution of phytic acid to iron absorption in beans is still a complex 

question since polyphenols and fiber contribute extensively to inhibition of iron bioavailability.  

 

2.2.6.2 Polyphenols 

Phenolic compounds are substances possessing an aromatic ring bearing one or more hydroxyl 

groups, including their functional derivatives.  They are one of the most numerous and 

ubiquitous groups of plant metabolites arising from two main synthetic pathways; the shikimate 

pathway and the acetate pathway (Shahidi, 2000).  This is an extremely wide and complex group 
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of plant substances and in their simplest classification can be grouped phenolic acids and 

derivatives, flavonoids and tannins (Bravo, 1998).  Phenolic acids include low molecular weight 

phenolic compounds, such as phenol itself but also include hydroquinone and derivatives, and 

phloroglucinol (Robbins, 2003).  Phenolics with a C6-C1 structure such as phenolic acids (e.g., 

gallic, vanillic, syringic, p-hydroxybenzoic) and aldehydes (e.g., vanillin, syringaldehyde, p-

hydroxybenzaldehyde) are common. Phenylpropanoid derivatives (C6-C3) are also common and 

include chromones, coumarins and hydroxycinnamic acids (p-coumaric, caffeic, ferulic, sinapic) 

and derivatives.  The flavonoids are sub classed into anthocyanins (e.g., pelargonidin, malvidin, 

cyanidin), flavones (e.g., epigenin, luteolin, diosmetin), isoflavones (e.g., daidzein, genistein, 

glycitein), flavonols (e.g., quercetin, myricetin, kaempfeol), flavanones and flavanols (Merken 

and Beecher, 2000).  Tannins are high molecular weight compounds and can be subdivided into 

two major groups; hydrolysable and condensed tannins (Martin-Tanguy et al., 1977).  

Hydrolysable tannins are easily hydrolyzed with acid, alkali or hot water and by enzymatic 

action (Porter, 1989).  They consist of gallic acid derivatives and can be subdivided into 

gallotannins and ellagitannins.  Condensed tannins or proanthocyanidins consist of falvan-3, 4-ol 

(catechin, epicatechin, etc) monomeric units with a flavan-3, 4-diol or leucoanthocyanidin 

molecule as its precursor.  

 

The polyphenol content of beans is in the range of 0.19-8 mg/g seed and is a function of bean 

seed coat color (Elias et al., 1979; Bressani and Elias, 1980; Hu et al., 2006, Luthria and Pastor-

Corales, 2006).  Beans contain a wide range of polyphenols including phenolic acids, 

proanthocyanidins, anthocyanidins as well as flavonols.  Flavonol glycosides (astragalin, 
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quercetin 3-O-β-D-glucopyranoside-(2→1)-O-β-D-xylopyranoside, and quercetin 3-O-β-D-

glucopyranoside), tannins and anthocyanins (cyanidin 3-diglucoside, 3,5-diglucoside, 

pelargonidin 3-glucoside, 3,5-diglucoside, malvidin glucosides, delphinidin 3-O-glucoside, 

malvidin 3-O-glucoside, and petunidin 3-O-glucoside) are present in the seed coat (Beninger et 

al., 1998, 1999; Takeoka et al.,1997).  In dehulled beans, presence of caffeic, p-coumaric, sinapic 

and ferulic acids have been reported (Garcia et al. 1998).  Isoflavones (daidzein, genistein, 

glycitein) and their glycosylated forms have been identified in various bean varieties (Romani et 

al., 2004; Antonelli et al., 2005) and their content shown to increase with germination (Díaz-

Batalla et al., 2006). 

 

Tannins in beans are linear polymers of flavan-3-ol (catechin and gallocatechin) and flavan-3 to 

4-diol (leucocyanidin and leucodelphinidin) units (Martin-Tanguy et al., 1977).  There are 

differences in the content of condensed tannins of beans depending on the color of seed coats.  

The white varieties of beans usually contain lower concentrations of tannins than those with red, 

black or bronze seed coats (Bressani and Elias, 1980; Elias et al., 1979).  However, Marquardt et 

al. (1978) reported that white varieties of faba beans have higher concentrations of tannins than 

those with dark testa.  

 

Polyphenols have diverse biological functions; both in the plant and in human health.  In plants, 

they act as phytoalexins, anti-feedants, attractants for pollinators, contributors to plant 

pigmentation/sensory characteristics of fruits and vegetables, antioxidants and protective agents 

against UV light, amongst others (Naczk and Shahidi, 2006).  In food, polyphenols have been 
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reported to have preservation properties and are used as natural colorants.  In human health, the 

high redox potential is an important property for their anti-oxidant functions allowing them to act 

as reducing agents, hydrogen donors, singlet oxygen quenchers and metal chelators (Shahidi, 

2000).  Further, isoflavones possess estrogenical, antiestrogenical, anticarcinogenic and 

antioxidant activities (Zhang et al., 2009) that have been linked to a reduction in osteoporosis, 

cardiovascular disease, prevention of cancer and treatment of menopause symptoms.  

2.2.6.2.1 Interactions with minerals  

Polyphenols may form a stable complex with a wide range of minerals (Conrad, 1970; 

McDonald et al., 1996).  Polyphenols containing o-dihydroxyphenyl (catechol) and o-

trihydroxyphenyl (galloyl) such as proanthocyanidins (catechol groups and galloyl groups) and 

hydrolysable tannins (galloyl groups) are the most potent iron chelators (Brune et al 1989, 

Hurrell et al 1999).  In plants, this reaction has been suggested to play a significant role in 

defense against microorganisms (Scalbert, 1991; Mila and Scalbert, 1994), but is of vital 

nutritional significance in humans as it lowers mineral bioavailability.  Iron chelating phenolics 

have been identified in legumes, tea, vegetables, wines, sorghum and coffee (Brune et al., 1989; 

Hallberg and Rossander, 1982; Hurrell et al., 1998).  This inhibition may be due to formation of 

insoluble iron (III)–phenol complexes, thus making the iron unavailable for absorption in the 

gastrointestinal tract (Slabbert, 1992).  On the other hand, addition of ascorbic acid increases the 

absorption of nonheme iron in the presence of polyphenols due to the reduction of Fe (III) to Fe 

(II) (Hallberg et al., 1989a; Siengeberg et al., 1991).  
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2.2.6.2.2 Remedies for anti-nutritional effects of food phenolics 

Several methods for lowering the potential antinutritional effect of phenolics in the diet have 

been evaluated (Salunkhe et al., 1989).  These include supplementing the diet with phenol-

binding materials, dehulling, cooking/steaming/extrusion cooking, soaking in water and chemical 

solutions, and promoting metabolic detoxification (by fermentation or addition of external 

polyphenol oxidase).  Soaking and cooking kidney beans decreased polyphenol contents by 

about 70% with losses from both soaking and cooking being of similar magnitude and mainly 

due to leaching into water (Shimelis and Rakshit 2007).  Heat processing may lower levels of 

assayable tannins because of the formation of insoluble complexes between tannins and seed 

proteins or other hydrophobic compounds (Butler, 1989; Shimelis and Rakshit 2007).  

Ammoniation, treatment with alkaline solutions, acids and formaldehyde (Deshpande and 

Cheryan, 1983), have been shown to significantly decrease the content of assayable tannins.  

Breeding for beans with low polyphenol content with no adverse effects on pathogen resistance 

and seed coat color is also another approach (Beebe et al., 2000).  

 

2.3 Iron bioavailability  

In the literature, the term ‘bioavailability’ is defined differently depending on the background of 

the author, the field and specific interest (Wienk et al., 1999).  Fairweather-Tait and Hurrel, 

(1996) defined mineral bioavailability as the fraction of the ingested nutrient that is absorbed and 

subsequently utilized for normal physiological functions.  The bioavailability of iron in mixed 

human diets is low and variable depending on host and dietary factors.  Host factors include, 

among others, body iron stores, erythropoetic activity and enterocyte exposure to iron; a 

reduction in iron stores will result in increased efficiency of absorption.  Dietary factors include 
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form of iron (heme vs. nonheme) and presence of other dietary components ingested with the 

meal (Dunn et al., 2007).  Heme iron comes from the breakdown of hemoglobin and myoglobin 

in meat, fish, and poultry whereas nonheme iron exists as ferric or ferrous salts in both plant and 

animal foods.  Dietary heme iron is directly absorbed into the enterocytes with virtually no 

influence by dietary factors, so its bioavailability may reach up to 30% (Fairbanks, 1994).  

Dietary nonheme iron, on the other hand, is commonly affected by dietary factors that chelate the 

iron and either enhance or inhibit absorption (Hallberg and Hulthen, 2002).  The result is a 

bioavailability that may range from < 1-10% (Hallberg and Rossander, 1982).  Factors that have 

been shown to inhibit nonheme iron absorption include phytic acid, fiber (cellulose, 

hemicelluloses, lignin, cutin, etc.), polyphenols, oxalic acid, Calcium, certain proteins/amino 

acids, haemagglutinins (lectins) and heavy metals (Cd, Hg, Pb, etc.).  Promoters of nonheme iron 

absorption include organic acids (ascorbic acid, fumarate, malate, citrate), hemoglobin, ‘the meat 

factor’, certain amino acids (met, cys, his, lys) and β-carotene (Hallberg and Hulthen, 2002).  

Effect of phytic acid and polyphenols on iron bioavailability has been discussed under section 

2.2.6 of this manuscript.  

 

Iron bioavailability can be assessed at digestibility (availability), transport into intestinal 

enterocytes (uptake), efflux across basolateral membrane of enterocytes (absorption), retention or 

endogenous excretion in urine and feces (retention), transport to tissues (utilization) and 

transport to storage sites (body stores) (Fairweather-Tait et al., 2005).  In vitro, animal and 

human methodologies have been developed to determine iron bioavailability at each of these 

steps. At the digestion step, iron bioavailability can be accessed by solubility (Shackleton and 
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McCance, 1936; Narasinga Rao  and Prabhavathi,1978), dialyzability (Miller et al., 1981) and 

use of human gastric juice (Bezwoda et al., 1978) methods.  Iron solubility measures the fraction 

of iron that is soluble in dilute aqueous or dilute acid extracts in vitro, in vivo (by collecting 

digesta samples from humans) or ex vivo in animals.  Narasinga Rao  and Prabhavathi (1978) 

showed that percentage ionizable iron correlated very well with percent iron absorption in a 

human absorption study.  They also demonstrated inhibitory effect of phytate and tannic acid as 

well as promoting effects of ascorbic acid and meat.  However, subsequent studies have shown 

that this method has poor correlation with either Caco-2 cell culture or human field trials and 

thus not a useful predictor of iron bioavailability (Platt and Clydesdale, 1984; Forbes et al., 1989; 

Pynaert, 2006).  The iron dialyzability method is an improvement to the solubility procedure and 

introduce in vitro digestion supported by gradual and reproducible pH adjustment from gastric to 

intestinal levels as well as use of a dialysis membrane with a specified molecular weight cut off 

to allow only low molecular weight, soluble iron (Miller et al., 1981).  Determination of iron 

bioavailability using this method correlated highly with iron absorption studies in humans 

(Schricker et al., 1981; Forbes et al., 1989) though not all dialyzable iron is bioavailable.  

Although it can be used to screen for iron bioavailability and for effect of enhancers and 

inhibitors, the magnitude of the effect and sometimes the direction may differ from human 

studies, calling for careful interpretation of results (Fairweather-Tait et al., 2005). 

 

At the uptake and absorption steps, in vitro (Caco-2 cell culture model), in man, and animals 

methods (using native iron or isotope labeled iron) have been developed.  These methods 

recognize the fact that not all soluble or dialyzable iron is absorbed and thus a need to measure 
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iron absorption across the basolateral membrane of enterocytes.  The Caco-2 cell culture model, 

a cell line developed from a human adenocarcinoma, has been the most commonly used in vitro 

iron absorption method (Alvarez-Hernandez et al., 1991; Halleux and Schneider, 1991).  The cell 

line spontaneously differentiates in cell culture to form a polarized epithelial monolayer with 

many of the characteristics of enterocytes (e.g., production of enzymes, well developed 

microvilli and tight junctions, etc).  Caco-2 cells are grown on porous membranes in bicameral 

chambers for 12-18 days to ensure maximal trans epithelial electrical resistance.  In vitro 

digested food samples are then added to the apical or upper chamber and uptake allowed to 

proceed for 1-24 hrs.  A dialysis membrane may be added to prevent contact with digestive 

enzymes or the digest is heat treated to inactivate enzymes.  The food sample may be radio 

labeled and the radioactivity in the cells, apical and basal chambers determined and used to 

calculate percentage uptake.  Otherwise, Caco-2 cell ferritin formation is determined and used as 

surrogate for iron uptake (Glahn et al., 1998).  Iron deficient cells are more effective in iron 

uptake than cells grown on normal iron levels.  A further modification of the method is use of 

cells grown on solid plastic plates which are then harvested after iron uptake and ferritin 

formation determined (Proulx and Reddy, 2006).  This model has been used to show that Fe (II) 

is better up taken than Fe (III) and that ascorbate enhances bioavailability (Alvarez-Hernandez et 

al., 1991).  Further, enhancing effects of meats and inhibiting effects of bran, tea and phytates 

have been shown (Au and Reddy, 2000).  The model has been shown to better approximate 

human iron absorption (Au and Reddy, 2000; Yun et al., 2004).  Subsequently, the Caco-2 cell 

model has been used to determine effects of numerous inhibitors and enhancers as well as effect 

of processing and fortificants on iron bioavailability from numerous food matrices.  However, 
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the in vitro digestion/Caco-2 cell culture model has numerous short comings; the fact that they 

are derived from colonic adenocarcinoma cells means that they may behave differently from 

normal, small intestine enterocytes. It has also been reported that transepithelial resistance in 

Caco-2 cells is much higher than in human small intestine and resembles that of human colon 

(Amine and Hegsted, 1975).  The absence of a mucin layer, which may play a significant role in 

intestinal iron absorption may also be problematic.  Caco-2 cell monolayer shows a low carrier 

expression, resulting in very low transport rates, so that a scaling factor may be required 

(Lennernäs et al., 1996).  Further, there is question of standardization of the procedure with 

various passage numbers and incubation periods reported in literature.  

 

 Animal models can be used to measure iron bioavailability at uptake, absorption, retention and 

utilization stages.   Rats (AOAC, 2012), chicks (Tako and Glahn, 2010; Tako et al., 2011) and 

pigs (Howard et al., 1993) are the most commonly used animal models.  Usually, the animals are 

depleted of iron by feeding an iron-deficient diet or by periodical bleeding.  However, the need 

for depleting iron stores may be avoided by using weanling animals with a similar iron status.  

The use of the rat model is complicated by the fact that the physiology of iron absorption is 

different from humans, especially by the fact that they are able to synthesize ascorbic acid, and 

they possess intestinal phytase activity.  Thus, animal models have been shown to deviate 

significantly from human studies (Reddy and Cook, 1991).  Though less frequently used, the pig 

model may more resemble the human iron absorption model.  At retention step of iron 

bioavailability, human chemical balance studies have been used (Moore et al., 1943; Rosado et 

al., 1992).  Human chemical balance studies measure the amount of iron that is absorbed or 
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retained by the body after accounting for fecal iron losses (McCance and Widdowson, 1937; 

Rosado et al., 1992) or measure post-absorption plasma iron (Moore et al., 1943).  They were the 

method of choice for determining iron absorption before the use of radioisotopes was introduced 

and are still useful in situations where radioisotope facilities are not available or exposure to 

ionizing radiation is not advisable.  Radioisotope balance techniques were introduced in the late 

1940s (Dubach et al., 1948) and have an advantages of obtaining estimates of endogenous 

excretion.  However, problems arise if the radioisotope does not exchange completely with the 

native iron.  Stable isotopes, on the other hand, have increasingly replaced radio-isotopes 

(Weaver, 1988) and eliminate health risks from ionizing radiation, do not decay, and can be used 

freely in analytical or other sample or food processing equipment without fear of radioactive 

contamination.  Other methods have made use of tissue concentrations of iron (plasma/serum 

iron, serum ferritin, serum transferrin receptors, hemoglobin regeneration and hemoglobin 

incorporation) as surrogates of iron bioavailability (Olszon et al., 1978).  

2.3.1 Iron bioavailability from beans 

Though beans show a high iron content (30-190 µg/g seed) bioavailability of this iron is very low 

and variable, depending on variety.  Polyphenols, phytic acid and some fractions of bean proteins 

have been implicated in lowering bean iron bioavailability.  Solubility/dialyzability methods 

typically over estimate iron bioavailability from beans while Caco-2 cell culture/animal studies 

and human absorption studies are more or less in agreement on the fraction of bean iron that is 

bioavailable.  However, what is in agreement is that white beans provide more bioavailable iron 

than colored beans due to the lower polyphenol content.   
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2.3.1.1 Iron solubility and dialyzability studies  

Initial solubility studies by Shackleton and McCance (1936) indicated high percentage of 

ionizable iron in raw, cooked and tinned beans (>70%) when extracted in dilute acid solutions.  

However, on implementing in vitro peptic digestion (pepsin and HCl at pH 2 for 2 hrs at 37 oC) 

and pancreatic digestion (pancreatin and bile salts at pH 7 using NaHCO3 for  4 hrs at 37 oC) 

proposed by Miller et al., (1981) to the iron solubility method, but without a dialysis membrane, 

Lombardi-Boccia et al., (1994) showed an iron solubility of 55% in whole white bean flour 

which reduced with  peptic digestion (to 4%) but increased with pancreatic digestion (to 18%).  

This showed inhibitory effects of protein digestion intermediate peptides but over estimated iron 

bioavailability as compared to iron dialyzability studies of the same samples.  Solubility of iron 

associated with globulin fractions was 40-48% while that associated with albumins was very low 

(<10%).  Solubility of iron associated with the albumin and globulin fractions increased with 

peptic and reduced with pancreatic digestion, more so in the albumin fraction.  Using a similar 

method, Pynaert et al., (2006) showed that an infant complementary food consisting of 

germinated, autoclaved and dried finger millet (65.2%) and kidney beans (19.1%), roasted 

peanuts (8%) and mango puree (7.7%) had 18.8% soluble iron which was significantly higher 

than an unprocessed combination of the ingredients (4.4%).  However, a Caco-2 cell culture 

model did not show a significant difference in the absolute iron uptake between the processed 

and unprocessed samples (1.3 and 3.4 nmol/mg cell protein), a result that had earlier been seen in 

human field trials (Mamiro et al., 2004).  Taken together, these two studies clearly demonstrate 

inability of the iron solubility method to predict iron bioavailability in these particular food 

matrices.  
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However, with inclusion of a dialysis membrane, Lombardi-Boccia et al., (1994) were able to 

show iron dialyzability results more in agreement with in vitro digestion/Caco-2 cell culture and 

human absorption studies.  Percentage dialyzable iron from mottled and white bean was 2.5 and 

3.6% respectively; a result in agreement with many Caco-2 (Hu et al., 2006, Ariza-Nieto, 2007; 

Beiseigel et al., 2007) and human absorption studies (Beiseigel et al., 2007; Petry et al., 2010; 

Petry et al., 2012).  This method was able to predict higher bioavailability of white beans over 

colored seed coated ones in agreement with human studies (Petry et al., 2012) but not the 

enhancing effects of dehulling and cooking of whole bean seeds (Lombardi-Boccia et al., 1995).  

Iron dialyzability was used by the same group to determine bioavailability of iron associated 

with various bean protein fractions and to study effect of various protein digestion residues 

(Lombardi-Boccia et al., 1994).  Iron dialyzability from whole white bean flour, albumin, G1 

globulin and G2 globulin fractions was 2.28, 0.4, 2.99 and 5% respectively.  A similar trend was 

obtained for protein dialyzability i.e. albumin < GI < G2. The low bioavailability of iron 

associated with the albumin fraction was blamed on its resistance to digestion, the low 

percentage of dialyzable amino acids and the phytic acid associated with it.   A high amount of 

cysteine associated with globulin digestion as well as its higher susceptibility to digestion may 

have enhanced bioavailability of associated iron.  Iron dialyzability procedures have also been 

used to study effect of extrusion cooking (Lombardi-Boccia et al., 1995b; Ummadi et al., 1995; 

Drago et al., 2007), and showed no significant effect of the heat process.  

 

2.3.1.2 Caco-2 cell and animal studies 

A combination of in vitro digestion and Caco-2 cell culture in studying iron bioavailability offers 

the best in vitro method whose results correlate well with human absorption studies and 
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predictive equations developed to relate the two (Yun et al., 2004).  These methods have mainly 

been used to screen for iron bioavailability in a large number of varieties and also to compare 

effect of different treatments and dietary factors.  When the cells are grown on porous 

membranes in bicameral chambers, it is also possible to study effect of host factors on iron 

bioavailability through application of treatments to the basal side. Glahn et al., (1998) used an in 

vitro digestion/Caco-2 cell culture model to study iron bioavailability from various foods and 

eliminated use of radioisotopes, pioneering the use of ferritin formation by the Caco-2 cells as 

surrogate for iron uptake.  This model was able to predict enhancing effect of ascorbic acid and 

superior bioavailability of heme (beef and fish) over nonheme iron (corn and beans).  Tako et al., 

(2009a) used the same method for determining iron bioavailability from red and white beans; 

comparing the in vitro digestion/Caco-2 cell culture method with a pig model.  They showed that 

though the cell culture method showed a significantly higher bioavailability from white beans 

over the red variety, the same could not be said of the pig model, which showed no significant 

difference.  From the pig model, hemoglobin repletion efficiency, a measure of percentage of 

ingested iron that is incorporated into hemoglobin was 20.8 and 23.5% for the white and red 

bean diets, respectively.  The lack of polyphenol effect (red beans had a higher polyphenol 

content) on iron bioavailability in the pig model may have been due to the adaptation of the 

animals to chronic exposure to polyphenols.  Beiseigel et al. (2007) compared the Caco-2 cell 

culture model with human uptake studies and showed some discrepancy between the two 

methods.  Subjects of varying levels of iron status absorbed iron equally from both the red and 

white bean samples (2.1 and 3.0% respectively).  These results were in contrast to the in vitro 

results where the white beans gave significantly higher iron uptake relative to the red beans.  The 
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discrepancy could be explained by the fact that the samples were extrinsically labeled and may 

not have equilibrated well with the intrinsic iron of the red bean sample. However, the Caco-2 

model was in agreement with the human subjects for maize samples in the same study, showing 

reliability of the method.  Other Caco-2 cell culture studies have confirmed enhanced iron 

bioavailability from white beans as compared to colored seed coat varieties (Hu et al., 2006, 

Ariza-Nieto, 2007; Laparra et al., 2008; Laparra et al., 2009).  Rat models (Welch et al., 2000), 

poultry models (Tako and Glahn 2010) and human studies (Petry et al, 2012) have confirmed 

similar seed coat color effects, i.e., a higher bioavailability of iron from white as compared to 

colored seed coat beans.  The pig model was used to show that biofortified black (Tako et al., 

2009b) and red mottled (Tako et al., 2011) beans provided more iron than standard varieties.  

2.3.1.3 Human absorption studies  

Though in vitro methods are useful for screening for iron bioavailability in large numbers of 

samples, ultimately human studies will be needed to verify results.  Lynch et al., (1984) 

determined iron bioavailability from different legumes (soy beans, black beans, lentils, mung 

beans and split peas) in humans using radioisotopes.  Male subjects with normal iron status were 

used in the study and the legumes administered in a soup meal labeled by the extrinsic tag 

method.   Mean percent absorption was low (0.8-1.9%) and was not significantly different 

among the legumes. Donangelo et al., (2003) used both extrinsic and intrinsic labels to study 

absorption from two bean genotypes, containing normal (50.4 µg/g) or high (82.9 µg/g) iron 

content.  They studied young women with low iron reserves and fed the beans in single meals. 

Iron absorption was less than 2% from both bean types, and total iron absorbed was not different 

between types. Petry et al., (2010) found iron absorption from whole red beans of 2.5%, which 
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more than doubled with removal of polyphenols and phytic acid.  Petry et al. (2012) found higher 

iron absorption rates (7 and 7.4%) when the beans were fed as multiple composite meals (served 

with rice or  potatoes) as compared to bean puree (3.4 and 4.7%) for red and white varieties 

respectively.  Thus, when fed alone, the high polyphenol content of red varieties tended to reduce 

iron absorption, but the effect was dampened when the beans were fed with rice or potatoes.  The 

same study showed that enhancing iron content of a red bean variety (91 ppm of iron) led to 

reduction in bioavailability (3.8%) and did not translate into increased total iron absorbed as 

compared to low iron variety (52 ppm of iron, 6.3% bioavailability), both meals fed as multiple 

composite meals.  Beiseigel et al (2007) showed that iron bioavailability in beans ranged from 2-

3% using stable isotopes.  This group also showed that iron absorption was increased 3 fold in 

vivo by addition of ascorbic acid (molar ratio of 20:1 ascorbic acid: iron).  

 

2.4 Phytoferritin 

Iron in plants is essential for plant productivity but its homeostasis is critical to prevent reaction 

with oxygen, which reactions could have deleterious effects on cell integrity.  Ferritin is one of 

the proteins involved in homeostasis of iron in plants.  Phytoferritin is a 540-600 kDa protein 

made up of a 24 subunit, ~28 kDa each, protein shell surrounding an iron oxide core and can 

store up to 4500 iron ions (Harrison and Arosio, 1996).  Ferritin is a ubiquitous iron storage 

protein found in all living kingdoms and is highly conserved, with plant and animal ferritin 

sharing between 39-49% amino acid sequence homology.  In vertebrates, ferritin consists of two 

types of subunit: heavy (H) and light (L), with apparent molecular weights of 21 and 19.5 kDa, 

respectively (Harrison and Arosio, 1996) and share ~55% identity in amino acid sequence.  
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However, phytoferritins show only one subunit type which shares ~40% sequence identity with 

the animal H-subunit (Masuda et al., 2001).  Ferritin from black beans, soybean and pea seed 

consists of two subunits of 26.5 and 28.0 kDa, which are designated H-1 and H-2, respectively, 

sharing ~80% amino acid sequence identity (Deng et al., 2011).  The two subunits are 

synthesized as a precursor (32 kDa) with a unique two-domain N-terminal sequence, the transit 

peptide that is followed by an extension peptide.  The transit peptide is presumed to facilitate 

transport of the ferritin precursor to plastids, upon which it is cleaved resulting in the formation 

of the mature subunit which assembles into a 24 subunit apoferritin within the plastids (Waldo et 

al., 1995).  The mechanism of iron uptake and storage by apoferritin in plants has been described 

by Liu and Theil (2005) and regulation of its synthesis, which is very different from that in 

animals, is described by Briat et al. (1995).  Though ferritin is the major iron storage protein in 

plants, its concentration may not necessarily correlate to iron content.  A positive correlation 

between ferritin expression and iron content has been reported in transgenic tobacco, lettuce 

(Goto etal., 1998, 2000) and maize (Aluru et al., 2011) but not in transgenic rice (Qu et al., 

2005).  Also, speciation of iron in the plant seed varies anywhere between 18-90% depending on 

species (Marentes and Grusak, 1998; Hoppler et al., 2008; Cvitanich et al., 2010).  In white and 

red kidney beans it was calculated that 20 and 25% of the total seed iron was bound to ferritin 

respectively (Hoppler et al., 2008; Cvitanich et al., 2010) with the largest portion found in the 

cytoplasm of cells surrounding the provascular tissue and cells near the epidermal layer.  In 

contrast, iron in wheat grain is primarily bound to phytate (May et al., 1980).  
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2.4.1 Ferritin iron absorption  

Iron associated with phyto ferritin has been shown to be as bioavailable as ferrous sulfate 

(Davila-Hicks, et al., 2004, Lonnerdal et al., 2006) and may be absorbed intact by endocytosis or 

micropinocytosis (San Martin et al., 2008).  For this to happen, ferritin must reach the enterocyte 

intact.  At physiological stomach pH (pH 2) ferritin is susceptible to pepsin digestion; though 

may escape at pH 4 (Martinez-Torres et al., 1986; Hoppler et al., 2008) and the released iron 

may interact with polyphenols and phytic acid; dietary factors that inhibit nonheme iron 

absorption.  However, ferritin is consumed within a food matrix where pH within a bolus of food 

may not reach pH 2 and may be partially protected from complete digestion (Kalgaonkar and 

Lonnerdal, 2008).  A recent study suggests that tannins in food may complex ferritin and reduce 

its digestion at pH 4 (Li et al., 2012).  Earlier studies had reported reduced rates of animal ferritin 

proteolysis (pepsin, pH 2.5) as compared to that to animal apoferritin (Crichton, 1970).  Thus, 

contribution of ferritin to iron bioavailability is still a subject of discussion and more work needs 

to be done to model its influence in a complex food matrix after in vivo digestion and absorption. 

2.5 Extrusion cooking 

Extrusion cooking is a high-temperature, short-time process in which moistened, expansive, 

starchy and/or high protein food materials are plasticized and cooked in a barrel by a 

combination of moisture, pressure, temperature and mechanical shear, resulting in diverse 

chemical reactions (Bredie et al., 1998; Ilo and Berghofer, 1999; Camire, 2001).  It has emerged 

as the preferred technology for development of Ready To Eat (RTE) products such as breakfast 

cereals, baby foods, snacks, textured vegetable proteins, and offers numerous advantages over 

other heat treatments such as drum drying, roasting, cooking, etc. (Anderson et al., 1969; Mercier 

and Feillet, 1975; Guy, 2001).  Compared to conventional heat treatments, extrusion cooking 
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improves digestibility and bioavailability of nutrients; offers versatility, high productivity, low 

operating costs, energy efficiency and shorter cooking times (Alonso et al., 2000; Alonso et al., 

2001).  It also offers an ability to develop a range of products with distinct textural advantages 

including expansion, crispiness and general mouth feel (Skierkowski et al., 1995; Berrios and 

Pan, 2001).  

 

In addition, extrusion cooking denatures many undesirable enzymes; inactivates some 

antinutritional factors (trypsin inhibitors, haemagglutinins); sterilizes the finished product; and 

minimizes nutrient, color and flavor loss (Bredie et al., 1998; Ilo and Berghofer, 1999; Camire, 

2001; Guy, 2001).  Other effects include improved protein digestibility, increased soluble dietary 

fiber and reduction of lipid oxidation (Bredie et al., 1998; Ilo and Berghofer, 1999; Alonso et al., 

2001).  The most important structural effect of extrusion cooking is starch gelatinization and 

protein denaturation to give desired product texture (Mercier and Feillet, 1975; Skierkowski et 

al. 1990).  Therefore, protein and starch content of the raw material, as well as chemical 

composition of these biopolymers are important factors (Tomas et al., 1997).  On the other hand, 

extruder processing parameters including raw material moisture content and flow rate, die 

temperature and pressure; and specific mechanical energy significantly influence extrudate 

physicochemical and sensory properties (Lawton et al., 1972; Mercier and Feillet, 1975; 

Edwards et al., 1994, Ilo et al, 1996). 

 

2. 5.1 Extruder types 

An extruder consists of a screw(s) which conveys the food material from a hopper along the 

barrel and out through a die achieving heating by both mechanical and thermal processes.  Two 
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types of extruders are in use today; single screw and twin screw extruders. Single screw 

extruders were initially developed for oil pressing but have since undergone various 

transformations (screw configurations/shape, heating jackets, etc.), to make them more versatile 

(Hauck, 1988).  Twin screw extruders on the other hand consist of two screws of equal length 

placed inside the same barrel (Clark, 1978).  They are generally categorized according to the 

direction of screw rotation (counter- or co-rotating) and to the position of the screw in relation to 

one another (intermeshing and non-intermeshing).  Twin screw extruders have become important 

in the food industry due to greater control of both product and process parameters, can work on 

formulations with high fat (18-22%) and wide ranges of moisture content (Colonna et al., 1983; 

Yacu, 1985; Edwards et al., 1994). 

 

2.5.2 Raw material for extrusion cooking 

Extrusion cooking is characterized by low moisture content (10-40%) and high temperatures 

(100-180 oC) and a wide range of raw materials can be utilized.  Guy (1994, 2001) has classified 

the different ingredients in the raw material according to their functional role.  Texture is one of 

the most important sensory attributes of extruded products and is mostly influenced by food 

biopolymers; mainly starches and proteins (Mercier and Feillet, 1975; Skierkowski et al. 1990, 

1995).  At high temperatures and extrusion moisture levels, the biopolymers form a melt fluid 

and bubbles of water vapor blow into the fluid to form a foam.  At the die end, the pressure 

inside the barrel reaches a maximum and as the melt is forced out of the die, the pressure is 

suddenly reduced to atmospheric pressure causing water to change from liquid to vapor causing 

it to puff.  Amylose/amylopectin ratios and protein composition are thus important influencers of 
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product quality (Tomas et al., 1997; Guy, 1994, 2001).  Corn, wheat, rice and soybean have 

provided the bulk of raw material for extruded products on the market (Mercier and Feillet, 

1975; Skierkowski et al.1995; Ilo et al., 1996; Bredie et al., 1998). 

 

2.5.3 Extrusion cooking of beans 

Extrusion cooking has been effectively used to reduce the cooking time, overcome effects of 

hard-to-cook defect, eliminate anti-nutritional factors, as well as improving the textural, 

nutritional, and sensorial characteristics of beans (Martı´n-Cabrejas et al., 1999; Ruiz-Ruiz et al., 

2008; Rocha-Guzman et al., 2008).  Hard-to-cook defect develops in beans that have been stored 

under adverse conditions of high temperature (>25°C) and high humidity (>65 %) and is 

characterized by extended cooking times for cotyledon softening (Hincks and Stanley, 1986; 

Jones and Boulter, 1983a; Jones and Boulter, 1983b) and thus require increased energy (fuel) 

cost for preparation; are less acceptable to the consumer due to changes in flavor, color, and 

texture; and have decreased nutritive quality (Bressani, 1982; Molina et al.,1975).  However, by 

pregelatinizing bean starch, extrusion cooking effectively reduces cooking time, bulk viscosity 

and increases nutrient density and consumer acceptability of extrudates (Edwards et al. 1994; 

Nyombaire et al., 2011).  Numerous studies have evaluated effect of extrusion cooking on 

nutritional and physicochemical characteristics of beans but comparison of these effects is 

hampered by the diverse types of extruders used, the extrusion conditions employed and the bean 

variety studied.  For this reason, it may be necessary to report extrusion conditions in order to aid 

interpretation.  The main extrusion conditions that have been studied include barrel temperature, 

moisture content and Specific Mechanical Energy (SME; a function of feed flow rate and 

extruder screw speed).  The overall effect of extrusion cooking depends on severity of operation 
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and the most severe conditions are high temperature, high SME and low moisture content 

(Edwards et al., 1994).  Twin screw extruders offer more severe mechanical shear and screw 

configurations can be altered to control severity of processing.  In the following sections, 

literature on effects of extrusion cooking on nutritional and physicochemical characteristics of 

beans will be reviewed.  

 

2.5.3.1 Effect on nutritional properties  

Extrusion cooking significantly alters the food matrix and influences nutritional value in many 

important ways (Camire, 2001).  It brings about starch gelatinization even at the low moisture 

contents employed and breaks down amylose and amylopectin polymers to lower molecular 

weight polymers, increasing susceptibility of carbohydrates to enzymatic digestion (Wang et al., 

1993).  Effect of extrusion cooking on proteins is mainly due to loss of amino acids during 

Maillard reactions and improved digestibility due to protein denaturation (Della Valle et 

al.,1994).  Lysine is most reactive amino acid due to presence of two available amino groups 

(O’Brien and Morrissey, 1989), though arginine, tryptophan, cysteine and histidine are also 

vulnerable (Iwe et al., 2001).  The rate of Maillard reaction increases with severity of extrusion 

cooking i.e. high temperatures and low feed moisture content.  Noguchi et al., (1982) showed 

loss of lysine during extrusion cooking of a cereal/soy-based mixture containing 20% sucrose 

ranged from 60-100% at 170 °C and 10–14% feed moisture.  Lysine loss increases with increase 

in sugar content (Bates et al., 1994).  Berrios and Pan (2001) studied effect of extrusion 

processing at different screw speeds (400-500 rpm) and flour particle size (0.85 -2.28 mm) on 

some nutritional properties of black bean flour.  A Werner & Pfleiderer Continua twin-screw 

extruder was used at constant screw configuration, die temperature (160°C), feed rate (25 kg h-1), 
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and feed moisture content (18%, wb).  Raw material flour particle size and screw speed did not 

affect the proximate composition (p >0.05), though extrusion cooking significantly reduced (p 

<0.05) fat content by over 50%.  Loss in lipid content can be attributed to complex formation 

with amylose which may reduce their extractability and eventual bioavailability (Bhatnagar and 

Hanna, 1994 a, b).  Simons et al. (2012) also did not find a significant effect of extrusion on 

proximate composition, but showed a slight increase in resistant starch.  The stability of vitamins 

depends on their chemical structure and composition as well as extruder parameters (moisture, 

temperature, light, oxygen, time and pH (Killeit, 1994; Camire 2001).  Overall, the lipid-soluble 

vitamins (D and K) and vitamins B6 and B12 (65-96% retention) are fairly stable while thiamin 

and folate are the most susceptible (30-65% retention) (Killeit, 1994).  As in amino acids, 

retention of vitamins decreases with severity of extrusion cooking i.e., increasing temperature, 

screw speed and specific energy input, as well as decreasing moisture content.  Steel et al., 

(1995) studied effect of extrusion cooking on the inactivation of anti-nutritional factors of freshly 

harvested HTC brown Carioca SH bean cultivar.  They used a Brabender bench top 19 mm 

single-screw extruder run at screw speed of 100 rpm, die temperature of 190 °C, and feed 

moisture content of 21.5% (wb).  They reported that extrusion effectively reduced trypsin-

chymotrypsin inhibitor and hemagglutinin activities 88% and 95%, respectively.  Previously, 

Edwards et al. (1994) reported a reduction of 85-99.6% of trypsin inhibitor activity on extrusion 

of small white bean flour extruded using a Werner & Pfleiderer 37 mm Continua twin-screw 

extruder with varying SME (146-294 Wh/kg), die temperature of 114-177°C and moisture 

content of 15-25%.  Using a Brabender bench top 19 mm single-screw extruder, Balandran-

Quintana et al. (1998) studied effect of die temperatures (140-180°C), screw speed (150- 250 
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rpm) and feed moisture content (18- 22%, wb), on trypsin inhibitor activity in extruded pinto 

bean flours and reported complete inactivation for all experimental conditions.  They also 

reported that extrusion processing increased the in vitro protein digestibility of the bean 

extrudate by 8.3%.  Similar to trypsin inhibitor activity, inactivation of lectins has been subject 

of numerous studies.  Karanja et al. (1996) used a Brabender bench top 19 mm single-screw 

extruder to evaluate different processing conditions for lectin inactivation capacity of HTC 

Canadian Wonder bean flours.  Die temperatures (100-180°C), screw speeds (49 -107 rpm), and 

feed moisture content (25- 30%, wb) were varied.  Lectin inactivation increased with increased 

extrusion temperature, moisture content and residence time.  Using a 30 mm laboratory co-

rotating twin-screw extruder and varying moisture content (25-36%) die temperature (120-130 

oC), screw speed (118-253 rpm), and feed rate (80 -120 g/min), Nyombaire et al., (2011) 

achieved a 90% reduction in phytohemagglutinin (PHA) activity for all experimental conditions.  

 

Alonso et al. (2000) studied the comparative effect of extrusion cooking, dehulling, soaking, and 

germination on protein and starch digestibility and reduction of anti-nutritional factors in kidney 

and faba beans.  Extrusion processing was performed in a Clextral X-5 45 mm twin-screw 

extruder, operated at 100 rpm, feed rate set at approximately 383-385 g/min, 25% wb moisture 

content and die temperatures of 152-156°C.  They reported that even though trypsin, 

chymotrypsin, α-amylase inhibitor activities of the two types of beans were decreased 

significantly by dehulling, soaking, and germination, haemagglutinating activity was not affected 

by the conventional processing methods.  However, extrusion cooking effectively inactivated all 

the antinutrients in the two beans under study, without altering protein content.  Additionally, 
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extrusion was the best method for improving in vitro protein and starch digestibility.  The effect 

of extrusion processing on some oligosaccharides in beans has also been studied.  Borejszo and 

Khan (1992) used a Wenger TX-52 twin-screw extruder to process pinto bean High Starch 

Fraction (HSFs) at die temperatures in the range of 110–163°C, screw speed of 300 rpm, and 

feed moisture of 18.8% (wb), to determine the effect of processing conditions on flatulence-

causing sugars (raffinose and stachyose).  Increase in temperature led to decrease in flatulence-

causing sugars.  Sucrose content decreased by 76% in samples extruded at 163°C, while 

raffinose and stachyose contents were reduced 47% to 60%, respectively.  Berrios and Pan 

(2001) showed that total oligosaccharides in black beans were not affected by difference in 

particle sizes, but was reduced significantly with increase in screw speed.  Addition of up to 

2.0% NaHCO3 did not further reduce individual free sugars (Berrios et al., 2002).  The latter 

study also observed a decrease in insoluble fiber (IF) and an increase in soluble fiber (SF), 

showing that extrusion processing causes a redistribution of the IF to SF fractions.  The authors 

attributed this fiber fraction redistribution to hemicellulose depolymerization leading to 

solubilization of arabinose, and uronic acids.  This confirmed what had been earlier reported by 

Martin-Cabrejas et al. (1999).  Thus, in inactivating anti nutritional factors, improving 

digestibility and reducing flatulence factors, extrusion cooking enhances nutritional value of 

beans.  

 

2.5.3.2 Effect on starch pasting properties and extrudate structure  

Starch gelatinization and protein denaturation are some of the most important reactions that 

occur during extrusion cooking.  The qualitative features of the extruded products are thus 
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characterized by several functional properties such as water absorption index (WAI), water 

solubility index (WSI), expansion ratio (ER), bulk density (BD) and pasting profiles.  These can 

be used to estimate extent of cooking, the functional characteristics of extrudates, predict how 

the materials may behave if further processed and to what end use the extrudate is most suited.  

Physicochemical and pasting properties of extrudates of different types of dry beans have been 

the topic of several studies.  By pregelatinizing bean starch, extrusion cooking effectively 

reduces viscosity of gruels, thus increasing their nutrient density for malnutrition intervention 

foods (Edwards et al. 1994; Nyombaire et al., 2011).  However, as noted by Oikonomou and 

Krokida (2011), it is difficult to determine overall effect of a single extrusion parameter on 

physicochemical characteristics owing to differences in the starting raw materials, the ranges of 

extrusion conditions and their combinations.  Edwards et al. (1994) extruded small white beans 

using a Werner & Pfleiderer Continua twin-screw extruder, at constant screw speed of 225 rpm.  

SME (146-294 Wh/kg), raw material moisture content (15–25%, wb) and die temperatures (114–

177 °C) were varied.  As the energy intensity increased, expansion ratio, starting viscosity and 

hot viscosity increased, while bulk density and ending viscosity decreased.  At low energy 

intensity, SME, die temperature and feed moisture content significantly increased expansion 

index but at higher energy intensity, expansion index depended mainly on SME.  Peak and final 

viscosity decreased with increase in either variable.  On the other hand, starting viscosity 

increased with increase in SME, die temperature and feed moisture content; showing severity of 

starch degradation.  All extrusion properties could be mathematically modeled as a function of 

feed moisture, die temperature, and SME using quadratic equations.  Karanja et al. (1996) used a 

Brabender bench top single-screw extruder run at screw speeds of 49-107 rpm and die 
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temperature (100- 180 °C) to evaluate expansion, WAI and WSI of Canadian Wonder bean 

flours at 25-30% moisture (wb).  Expansion and WAI of the extrudate increased while WSI and 

bulk density decreased with increased extrusion temperature.  Similar results were later reported 

by Martin-Cabrejas et al. (1999) for dry bean (cv. Horse-head) extrudates, processed in the same 

type of extruder, at die temperatures of (140-180°C).  Simons et al. (2012) showed increasing 

screw speeds (a measure of SME) reduced expansion index and increased b values on the Hunter 

color scale in precooked bean flours.   WAI and WSI were not significantly affected by screw 

speed/SME. 

  
Balandran-Quintana et al. (1998) extruded pinto bean flours at various moisture contents (18- 

22%, wb), screw speeds (150- 250 rpm) and die temperatures (140-180°C) using a Brabender 19 

mm single-screw extruder.  They indicated that temperature and feed moisture conditions 

significantly (p < 0.05) increased bulk density, expansion, and WAI.  Gujska and Khan (1990) 

extruded high starch fractions (HSFs) of navy beans, pinto beans, and chickpeas and generally 

showed an increase in WAI, WSI and expansion ratio with increase in temperature up to 132oC, 

but a decrease thereafter.  Using a 30 mm laboratory co-rotating twin-screw extruder and varying 

moisture content (25-36%) die temperature (120-130 oC), screw speed (118-253 rpm), and feed 

rate (80 -120 g/min), Nyombaire et al. (2011) reported that increasing moisture content 

significantly increased bulk density of light red kidney beans.  However, none of the conditions 

studied significantly influenced WAI and WSI, though there was a general trend of increase with 

increase in moisture content and feed rate. 
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Berrios and Pan (2001) showed that expansion ratio of black bean flours increased with increase 

in screw speed and decrease in particle size.  Nyombaire et al., (2011) however did not report 

any effect of die temperature, screw speed or moisture content on expansion ratio of light red 

kidney beans.  Only feed rate significantly increased expansion ratio.  Berrios et al. (2004) 

further improved expansion ratio two- fold by adding 0.5% NaHCO3 to black bean flours prior to 

extrusion processing, an effect attributed to an increase in the number of air cells and a decrease 

in cell wall thickness.  The combined effect of these two factors caused the collapse of the cell 

walls and the appearance of large void spaces within the extrudates causing increased expansion 

and reduced strength.  In conclusion, increasing the severity of mechanical and thermal energy 

input as well as the amount of plasticizer favors starch breakdown and loss of viscosity.  

 

2.5.3.3 Effect of extrusion cooking on phytates and polyphenols 

Extrusion cooking has been proposed as promising strategy to reduce effect of anti-nutritional 

factors in beans.  It generally reduces the higher inositol phosphates (IP5 and IP 6) while 

increasing lower phosphate fractions (IP2-IP4) (Sandberg et al., 1987; Alonso et al., 2000; El-

Hady and Habiba, 2003).  On the other hand, effect of extrusion cooking on polyphenols is 

variable and dependent on the polyphenolic profile of beans, decreasing oligomers with degree 

of polymerization (DP) of 4–9 while increasing fractions with DP of 1-2 (Korus et al., 2007; 

White et al., 2010).  A slight reduction in isoflavone content and their decarboxylation, causing 

higher proportions of acetyl derivatives, on extrusion cooking has been reported (Mahungu et al., 

1999).  However, the consensus is that total polyphenolic content and anti oxidant activity are 

reduced by extrusion cooking (Camire, 2001).  Korus et al. (2007) studied effect of extrusion 
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cooking on the phenolic composition and antioxidant activity of three variously colored (dark-

red, black-brown and cream) Polish bean cultivars.  They used a Brabender 20DN single screw 

extruder at constant feed rate and screw speed (90 rpm); variable moisture content (14 and 20%) 

and die temperature (120 and 180 °C).  Polyphenol content of raw material ranged from 0.3-0.9 

mg/g; highest in the dark red and lowest in the cream seed coat colored varieties.  Kaempferol 

and quercetin content (the most potent iron absorption inhibiting polyphenols in beans) followed 

similar trend.  Myricetin, cyanidin, chlorogenic acid, caffeic acid, ferulic acid and p-coumaric 

acid were the other phenolics identified in both raw and extruded beans.  The effect of extrusion 

on the total phenolic content depended on the cultivar; increasing up to 28% in dark red but 

decreasing 30 and 38% in black-brown and cream cultivars respectively.  High moisture and low 

temperature maximized increase in former while low moisture and high temperature minimized 

polyphenol content in the later. Also, effect of extruder parameters (barrel temperature and 

moisture content) on individual phenolic fraction varied; the biggest increase being by 84% in 

quercetin content of dark red variety.  Some fractions decreased while others increased, 

depending on variety and extrusion conditions.  Overall, total polyphenol content decreased with 

increase in temperature and decrease in moisture content.  Both anti-oxidant and free radical 

scavenging activity reduced with extrusion cooking, reducing with increase in both temperature 

and moisture.  Similarly, Delgado-Licon et al. (2009) and Anton et al. (2009) observed a 

significant decrease in the total polyphenols and antioxidant activity during extrusion of 

bean/corn mixture.  The decrease in total polyphenols and antioxidant activity was dependent on 

process conditions and bean variety; ranging from 10-70% and 22-65% respectively.  Alonso et 

al. (2000) studied the comparative effect of extrusion cooking, dehulling, soaking, and 
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germination on polyphenol, condensed tannins, and phytate content in kidney and faba beans.  

Extrusion processing was performed in a Clextral X-5 45 mm twin-screw extruder, operated at 

100 rpm, feed rate set at 383-385 g/min, 25%, wb, moisture content and die temperatures of 152-

156 °C.  Raw bean composition was 1.6% phytate, 3.6 mg/g condensed tannins and 2.1mg/g 

total polyphenols.  Germination for 72 hrs was most effective in removing phytates (30.2%) 

while dehulling eliminated up to 90% of polyphenols and condensed tannins.  Extrusion cooking 

eliminated 21.4% phytates, 83.8% tannins and 45.9% polyphenols.  Similar results were obtained 

in a later study (Alonso et al., 2001) which, after accounting for individual inositol phosphates, 

showed that reduction in total phytates was only 4% while the IP-6 fraction reduced by 26.8%; 

with a concomitant increase in IP-5 (fivefold) and IP-4.  Thermal hydrolysis was credited for 

effects of extrusion cooking on phytates while reduced extractability (due to increased 

polymerization or complexing with proteins and other hydrophobic components) and altered 

chemical reactivity could explain effect on polyphenols.  Earlier, Sandberg et al. (1987) had 

shown thermal hydrolysis of IP-6 to lower inositol phosphates on extrusion cooking on wheat 

bran and subsequent inactivation of phytase enzyme.  El-Hady  and Habiba (2003) studied effect 

of soaking and extrusion conditions on polyphenol, tannins and phytate content of peas, 

chickpeas, faba and kidney beans.  Seeds were soaked at 30 °C for 16 h and extruded in a 

Brabender Laboratory Single-Screw extruder at variable moisture content (18% or 22% wb), 

barrel temperature (140°C or 180°C), constant screw speed (250 rpm); screw compression 4:1; 

feeding screw speed (160 rpm).  Raw beans contained 1.1% phytic acid, 2.33 mg/g tannins and 

0.64 mg/g polyphenols.  All the anti-nutrients reduced with soaking (11.9, 2 and 4.5%); 

extrusion cooking (12.6, 16 and 15.7%) and a combination of the two (14, 26.6 and 35.4 %) 
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respectively.  During extrusion cooking, a high temperature and high moisture content favored 

loss of phytates, tannins and polyphenols though the interaction was not significant.  Overall, a 

decrease in polyphenol and phytic acid content is observed on extrusion cooking; which effect 

increases with severity of extrusion cooking process (i.e., increase in temperature and reduction 

in moisture content).  The effect on polyphenol content is further complicated by the fact that 

their analysis is challenging since they may be bound to non-starch polysaccharides and are not 

easily released during extraction procedures (Camire, 2001).  The increase in free phenolic 

compounds on extrusion cooking may thus be due to thermal liberation.  However, decrease in 

polyphenol content may be due to complexing with non-starch polysaccharides though some 

phenolics, e.g. caffeic-, ferulic- and p-coumaric acids are heat-sensitive and susceptible to 

thermal breakdown (Dimberg et al., 1996).  Therefore, careful characterization of both phytic 

acid and phenolic compounds and their breakdown products in extruded foods by mass 

spectrometry is essential in order to understand how extrusion alters these compounds and their 

potential health effects. 

 

2.5.3.4 Effect on iron bioavailability  

Compared to effect on polyphenol and phytic acid contents (factors known to inhibit iron 

absorption), relatively little work has been done on the effect of extrusion cooking on iron 

bioavailability.  In most studies, reduction in polyphenol and phytate acid content has 

traditionally been considered as a proxy to increase in iron bioavailability.  However, as Hurrel 

et al., (1992) showed, reduction in phytate ought to be as high as 95% of natural levels for 

appreciable effects in bioavailability to be realized.   Indeed, studies of effect of extrusion 
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cooking on iron bioavailability have showed mixed results with some showing an increase while 

others do not.  Alonso et al. (2001) studied effect of extrusion cooking on mineral bioavailability 

in pea and kidney bean seed meals.  Finely ground flours were extruded in a  Co-rotating twin 

screw extruder (100 rpm screw speed, 350 g/min flow rate, 25% moisture content and 150 °C die 

temperature).  A significant increase in iron content was reported after extrusion cooking, an 

effect considered to be due to wear and tear of extruder metal parts.  Alongside a reduction in 

total phytates (4%) and IP-6 (26.8%) and concomitant increase in IP-5 (fivefold) and IP-4 as well 

70%  reduction in tannin content, iron bioavailability increased by 40%.  The increase in iron 

bioavailability due to iron contamination from extruder parts was not accounted for in this study.  

However, the change in phytate fractions, from higher phosphate to lower phosphate inositols (as 

well as tannin degradation) may partially explain increase in iron bioavailability.  Inositol 

phosphates with less than 5 phosphate groups have been shown to have no iron absorption 

inhibition capacity (Lönnerdal et al.,1989, Sanberg et al., 1999).  Hazell and Johnson, (1989) 

used iron diffusibility as a measure of iron bioavailability and showed that it increased from less 

than 3% in raw whole maize to over 20% in a refined and extruded product.  However, they 

concluded that the extrusion cooking process in itself was responsible for only a small part of the 

increase in iron diffusibility, with the bulk of the increase in diffusibility attributed to pre-

processing procedures and contamination from processing equipment.  

 

Hurrell et al., (2002) studied effect of extrusion cooking, steam cooking and roller drying on 

phytate degradation and related it to improvement in iron bioavailability in rice, maize and wheat 

using the radio labeled iron extrinsic tag technique.  Extrusion cooking was carried out at 25% 
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moisture content, 160 °C die temperature, 10 Mpa pressure and steam cooking at 135 oC.  The 

study showed that iron absorption was relatively low from products made with the different 

cereal flours, ranging from 1.8-5.5% for rice, 2.5-3.5% for maize, 4.9-13.6% for low-extraction 

wheat, and <1% for high-extraction wheat foods.  The phytic acid content remained high after 

extrusion cooking (1.2, 1.7, 3.2, 3.3 mg/g in low-extraction wheat, rice, high-extraction wheat 

and maize products respectively) and could explain the low iron absorption.  There were little or 

no differences in iron absorption between the extruded and roller-dried cereals.  Bread-making, 

however, degraded phytic acid to non-detectable levels in the low-extraction wheat flour and 

increased iron absorption to 13.6%.   Similar results were obtained by Frontela et al. (2008) who 

showed that an industrial roasting process did not sufficiently reduce phytic acid and high 

inositol phosphates (IP-5 and IP-6) in infant cereals to effect increase in iron bioavailability.  The 

phytate/iron molar ratio was >1.3, substantially higher than the <0.4:1 required in order to 

achieve, at least, a 2-fold increase in iron absorption (Hurrell, 2004).  Earlier, Ummadi et al., 

(1995) showed that though lower forms of inositol phosphates (IP-3, IP-4 and IP-5) increased to 

51-71% of total phytate in extruded navy beans, chickpeas, cowpeas and lentils (from 21-33% in 

raw legumes) and tannin content decreased, iron dialyzability was 1.2-2.7% and was not 

significantly improved by extrusion cooking.  They concluded that protein fractions formed 

during extrusion processing may bind iron tightly and reduce its bioavailability.  In conclusion, 

extrusion cooking is a promising strategy to improve iron bioavailability at constant iron content 

by modifying the food matrix and aiding release of iron as well as reducing the anti-nutritional 

factors.  
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2.5.3.5 Effect on bean sensory properties   

Extrusion is used commercially to produce high value breakfast and snack foods based on cereals 

such as wheat or corn.  Though promising, the technology is not being commercially used for 

legume pulse seeds due to low expansion ratio and poor sensory properties as compared to 

traditional wheat and corn extruded products.  However, the rise in consumer demand for 

convenience and/or healthy foods has spurred significant interest in developing bean based 

extruded products.  The variety of products made from common bean extrudates include 

porridges (Nyombaire et al., 2011); and expanded snacks, breakfast cereal type products (Berrios 

et al., 2008).  Extruded bean products are marketed on the basis of superior healthful properties 

like high protein and dietary fiber, low-calorie, very low in sodium and fat, cholesterol-free and 

gluten-free.  Extrusion cooking generates various flavor profiles depending on the raw material 

(Bredie et al., 1998).  Temperature and moisture level are the most important variables 

influencing aroma generation, with higher temperatures and moisture contents favoring burnt and 

toasted aromas.  However, there is a dearth of research on specific sensory properties of extruded 

beans.  Berrios et al. (2008) developed barbeque, cheese, classic, sugar and plain coated 

breakfast cereal type snack from a range of legumes and showed an overall average liking 

percentage of 80%, independent of the type of coating used, and about 60% for the plain snack.  

Nyombaire et al. (2011) used a 30 mm laboratory co-rotating twin-screw extruder to study effect 

of moisture content (25-36 %), die temperature (120-130 oC), screw speed (118-253 rpm), and 

feed rate (80 -120 g/min) on sensory characteristics of extruded red kidney bean.  A Rwandese 

consumer panel scored porridge from the flour at 7 on a nine point hedonic scale with over 75% 

of the panelists scoring it at 7 and above.  Steel et al. (1995) used extrusion cooking to reverse 

the effects of hard to cook defect in beans and established sensory properties of the extrudates.  
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They used a Brabender single screw laboratory extruder, Model GNF 101412, at 190 °C die 

temperature; rotation of the screw, 100 rpm; die diameter, 3mm and compression ratio, 3 : l.  A 

trained panel was used to assess sensory characteristics.  Hard to cook beans exhibited a 

significantly inferior flavor to fresh beans and on extrusion cooking, hard to cook beans 

exhibited a bitter taste which was more pronounced than that of extruded fresh beans.  

Skierkowski et al. (1995) studied effect of extrusion cooking on textural properties of snacks and 

compared instrumental measurements to consumer ratings.  They used a Wenger X-5 laboratory 

single screw with a length/diameter ratio was 10.5:1.  The screw speed was set at 700 rpm, feed 

rate of 7 kg/hr, die temperature 110-150 °C and moisture adjusted by injecting water into the 

feed at a constant level of 1.9 L/hr.  Increasing barrel temperature reduced sample stress and 

increased sensory score for crispness.  Products processed below 121°C were unacceptable.  

They also established effect of protein and fiber content and showed acceptable ranges of 13-

16% protein or 17-21% fiber; outside of which extrudates were too hard.  However, shear stress 

increased with increasing protein or fiber content.  To better understand the effect of extruded 

bean flour on sensory characteristics, investigations looking at effect of flour substitution at 

various levels have been done.  Anton et al. (2009) studied effect of 15, 30 and 45% substitution 

of corn flour with bean flour in an extrusion cooked fortified puffed snack.  They used a 

laboratory scale twin screw extruder screw length to diameter (L/D) ratio of 25.0.   Process 

variables (screw speed, moisture, and temperature of the final zones) were kept constant (150 

rpm, 22% and 160 oC).  Corn starch-bean extrudates were denser, less expanded and harder than 

corn starch controls.  However starch fortified with 30% bean flour produced extrudates with 

crispness comparable to corn starch.  In conclusion, though data on sensory properties of 
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extruded bean flour is scarce, the few studies that have been presented show that beans increase 

hardness of snacks and introduce beany/bitter tastes on extrusion.  However, as most of the 

snacks are flavored, flavoring of bean snacks will go a long way in improving consumer 

acceptability. 

 

2.6 Food product optimization  

2.6.1 Rationale for product optimization 

Food product optimization refers to the process of determining values of the independent 

variables that lead to an optimal value of the function that is to be optimized (Schutz, 1983, 

Stone and Sidel, 1985).  The information obtained is important for product formulation efforts 

and quality control; and forms a basis for identifying those specific product variables that require 

monitoring before and during processing (Stone and Sidel, 1985).  Computer programs capable 

of analyzing optimization models have been developed, and these graphically or numerically 

identify a combination of factor levels that simultaneously satisfy the requirements placed on 

each of the responses and factors.  Contour plots are useful to study optimization data and 

determine optimal conditions (Rustom, 1991).  Optimization of ingredients and processes during 

product development helps answer questions like; How does each process and ingredient affect 

product quality? How do they correlate to the other ingredients/processes? Which correlations 

are most important for product quality management? How does one choose the right combination 

of ingredients and their levels? All this will lead to development of a product with optimal 

quality indices and a better consumer acceptance.   
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2.6.2 Response surface methodology  

Response surface methodology (RSM) is the most common statistical optimization method used 

in the food industry (Saguy et al., 1984).  It is a collection of mathematical and statistical 

techniques that are useful for the modeling and analysis of problems in which the response of 

interest is influenced by several variables and the objective is to optimize this response.  RSM is 

an effective technique used for processes or formulations with minimal experimental trials when 

many factors and their interactions may be involved (Malcolmson et al., 1993).  These designs 

provide information on direct effects, pair wise interactions and curvilinear variable effects.  In 

RSM an experimental design is used to fit a model using least squares regression analysis whose 

adequacy is revealed by diagnostic checking provided by analysis of variance (ANOVA) and 

residual plots.  There are many classes of RSM designs but Center Composite Design (CCD) and 

D-optimal are the most popular. 

2.6.3 Desirability function approach 

Several optimization methods can be used to optimize multi-response systems including 

conventional graphic method, the improved graphic method, the extended response surface 

procedure (based on a software program to search for optimum solutions) (Fichtali, et al., 1990) 

and the desirability function approach.  The Desirability Function Approach (DFA) is an 

analytical technique for optimization of multiple responses simultaneously.  It was first 

developed by Harrington (1965) and later modified and extended by Derringer and Suich (1980).  

DFA calculates individual desirability associated with each response and then an overall 

desirability can be calculated as the geometric mean of individual desirability.  The characteristic 

of DFA as simple and easy to apply has allowed subjective judgment on the importance of 

response variables (Guillou and Floros, 1993).  DFA method has been employed by major 
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statistical software such as StatEase and Minitab as the main method to optimize the design to 

targeted values. 
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Abstract  

Iron bioavailability of 16 Ugandan bean varieties was determined and modeled with respect to 

key influencing factors; phytate, polyphenol, ferritin and iron content.  An in vitro 

digestion/Caco-2 cell culture model was used to determine iron bioavailability and ferritin 

quantification by western blot densitometry.  Polyphenol content ranged from 0.2-1.8 mg/g; 

phytate, 0.2-1.6%; iron, 57-90 µg/g; ferritin, 285-495 µg/g, relative bioavailability 5.5-34.3% 

and were significantly different (P<0.05) across bean varieties.  Iron bioavailability of white seed 

coat varieties (34.3%) was significantly higher (P<0.0001) than in colored seed coat varieties (5-

10%). A fixed effects multiple regression model showed that polyphenol content, iron content 

and their interaction were significant model terms (P<0.05), explaining 68% of the variation in 

iron bioavailability.  Linear effects of polyphenol and iron content decreased iron bioavailability 

while their interaction increased it.   Our data suggest that iron bioavailability in beans is 

complex but can be indirectly screened for by seed coat color. 
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3.1 INTRODUCTION 

Iron deficiency is the most prevalent micronutrient deficiency in the world (WHO, 2010) and is 

the primary cause of anemia.  Adverse effects of anemia include increased mortality and 

morbidity, decreased labor productivity, and impaired neurological/mental development  

(Stoltzfus, 2001).  The main cause of iron deficiency is a dependence on low iron bioavailability 

staples and particularly affected are populations in developing countries.  Strategies to control 

iron deficiency include supplementation, fortification, biofortification and dietary diversification 

(Zimmermann and Hurrell, 2007).  However, these efforts have all fallen short of making any 

significant improvements in the iron status of the global population (Micronutrient Initiative, 

2004) and new, complimentary strategies need to be devised. 

Common beans (Phaseolus vulgaris) are an important staple in many parts of South America, 

Africa and Asia.  They are the prime source of calories, proteins and iron; and in spite of high 

iron content (30-190 ppm) (Graham et al., 1999; CIAT, 2008; Beebe et al., 2000), its 

bioavailability is very low (<5%) (Lynch et al., 1984; Donangelo et al., 2003; Beiseigel et al., 

2007; Petry et al., 2010; Petry et al., 2012).  Strategies to increase their contribution to iron 

nutrition should increase both iron concentration and bioavailability.  Indeed, biofortification 

efforts have been successful in increasing the iron content of beans (Bouis, 2003; CIAT, 2008) 

but these efforts have not been matched with strageties to increase its bioavailability.  To achieve 

atleast 30% Estimated Average Requirements (EAR) of iron from beans for nonpregnant, non 
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lactating women (1,460 µg/day) and children 4-6 yrs (500 µg/day) at constant iron bioavilability 

of 5%, iron content of beans needs to be increased to 107 µg/g (Bouis et al., 2011).  Though 

some studies show an increase in total absorbed iron with increase in bean iron content (Tako et 

al., 2009; Tako et al., 2011) others have shown no such benefit (Donangelo et al., 2003; Petry et 

al., 2012).   

Iron bioavailability varies widely among bean varieties and is mainly determined by polyphenol 

and phytic acid content, factors known to inhibit iron absorption (Welch et al., 2000; Hu et al., 

2006; Petry et al., 2010; Petry et al., 2012).  These act by forming insoluble complexes with 

dietary iron in the gastro-intestinal tract thus inhibiting its absorption. Polyphenols and phytic 

acid reduce iron bioavailability in a dose dependent manner but their combined effect is complex 

(Welch et al., 2000; Hu et al., 2006; Petry et al., 2010) and may be a function of type of 

polyphenols present (Brune et al.,1989; Hurrell et al.,1999).  However, the general consensus is 

that breeding for low polyphenol/low phytates varieties (Mendoza, 2002; Campion et al., 2009); 

or their elimination through appropriate processing (Hurrel et al., 1992; Petry et al., 2010) 

significantly improves iron bioavailability.  Factors that enhance iron bioavailability include 

ascorbic acid, animal tissue and certain amino acids (Carpenter and Mahoney, 1992). 

Ferritin, on the other hand, is an iron storage protein whose associated iron has been shown to be 

highly bioavailable (Davila-Hicks et al., 2004; Lonnerdal et al., 2006) and may be absorbed 

intact by endocytosis or micro pinocytosis (San Martin et al., 2008).  However, ferritin is 

susceptible to gastric digestion at physiological pH (pH 2) releasing the associated iron to 

interact with phytates and polyphenols (Hoppler et al., 2008).  Regardless, there is a lot of 
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interest in ferritin content of beans and how it affects iron bioavailability (Lukac et al., 2009; 

Aluru et al., 2011).  Therefore, it is important to understand iron bioavailability in a complex 

food system containing both inhibitors and potential modifiers. 

This study, therefore, aimed at screening 16 Ugandan bean varieties for iron bioavailability and 

modeling it with respect to key influencing factors; iron, phytates, polyphenol and ferritin.  The 

in vitro digestion/Caco-2 cell culture model was used as a cost effective technique to measure 

iron bioavailability (Glahn et al., 1998; Proulx and Reddy, 2006).  It was hypothesized that 

modeling iron bioavailability in beans will establish relative contribution of each factor and 

provide guidelines for breeding programs.  

3.2 MATERIALS AND METHODS 

3.2.1. Materials 

Table 3.1 shows the bean varieties used in this study and their seed coat color.  Sixteen (16) bean 

varieties were obtained from National Crops Resources Research Institute (NaCRRI) in 

Kampala, Uganda.  The seeds were washed in distilled water, dried and ground using a cyclone 

sample mill (UD Corporation, Boulder, CA) to pass through a 0.5 mm diameter particle size 

screen.  Flours were then stored at 4°C until analysis. Flours for iron bioavailability studies were 

autoclaved (121 °C for 15 min) with sufficient deionized water.  After cooling to room 

temperature, the samples were lyophilized, ground, and stored in airtight containers at 4 °C. 

Recombinant pea ferritin (rFerr) was kindly donated from the Institute of Food Science and 

Technology, Laboratory of Human Nutrition (Zurich, Switzerland).  Primary anti-soy ferritin 

polyclonal anti body was kindly donated by Dr. Paul Scott, Department of Agronomy, Iowa state 
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University.  All chemicals and reagents were purchased from Sigma Aldrich (St. Louis, MO) and 

Fisher Scientific Co. (Fairlawn, NJ) unless otherwise stated. 

3.2.2. Analytical methods 

3.2.2.1. Moisture content 

The moisture content was determined by AOAC method 925.09 using a convectional drying 

chamber (AOAC, 1999).  Two grams of bean flour were weighed on to an aluminum moisture 

dish and dried at 125 °C for 3 h, cooled for 5 min in a desiccator and a final dry weight 

measurement made. 

 

3.2.2.2. Phytic acid 

Phytic acid content was determined according to procedures developed by Harland and Oberleas 

(1986).  Phytic acid is isolated by anion exchange chromatography followed by acid digestion to 

release inorganic phosphorous, which is quantified by colorimetric assay.  Briefly, phytic acid 

was extracted from flour samples with 2.4% HCl (ratio of flour: acid of 1:20 w/v) for 4 h at room 

temperature on an orbital shaker, centrifuged at 4000 rpm for 10 min and supernatant filtered 

through a No.1 Whatman filter paper.  The supernatant was mixed with Sodium EDTA-NaOH, 

added to Anion exchange resin (AG1-X4, 100-200 mesh, Chloride form; Bio-Rad Laboratories, 

Richmond, CA) and eluted sequentially with distilled water, 0.1 M NaCl and 0.7 M NaCl.  The 

eluent was digested with H2SO4 and HNO3 on a Micro Kjeldahl digestion block and released 

phosphorous colorimtrically assayed with ammonium molybdate and sulfonic acid reagents.  

AACC Red Wheat bran was used as a control.                               
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3.2.2.3. Polyphenols 

Polyphenol content was measured colorimetrically as catechin equivalents by Folin-Ciocalteau 

reagent after methanol/water/acetic acid (75:30:5) extraction according to procedures by 

Zielinski and Kozlowska (2000) with minor modifications as below.  One gram of sample was 

extracted with 20 mL Methanol/Water/Acetic acid solution for 2 h at 4°C on a mechanical 

shaker.  The samples were then centrifuged at 10,000xg for 10 min at 4°C and the supernatant 

filtered through #1 Whitman filter paper.  A 0.25 mL aliquot was then mixed with 0.25 mL of 

1N Folin-Ciocalteau reagent and 2 mL distillated water.  After 3 min at room temperature (but 

less than 8 minutes), 0.25 mL of a saturated sodium carbonate solution was added and the 

mixture placed at 37 °C in a water bath for 30 min.  The absorbance was measured at 750 nm 

using a UV/vis spectrophotometer (SpectronicR 21D, Spectronic Instruments). (+)-Catechin was 

used as the reference standard and the results were expressed as mg of catechin equivalents/g 

sample. 

3.2.2.4. Iron bioavailability 

Iron bio-availability was determined according to methods proposed by Proulx and Reddy (2006) 

using in vitro digestion/Caco-2 cell culture model.  Ferritin synthesis by the Caco-2 cells was 

used as a measure of iron absorption.  The procedures are briefly described below.  

In vitro digestion of bean flours: Autoclaved and freeze dried bean flour was sequentially 

digested with pepsin (at pH 2) and pancreatin (at pH 6) to simulate gastric and duodenal 

digestion and enzyme activity stopped by heat treatment for 4 min in boiling water.  A ferrous 

ascorbic acid (1:20 molar ratio) solution was included as a positive control.   In a separate set of 

samples, 0.1mM ascorbic acid was added to increase ferritin response. 
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Iron Bioavailability in Caco-2 Cells: All reagents for cell culture work were from Sigma 

Aldrich (St Louis, MO) or Gibco BRL (Grand Island, NY) unless otherwise mentioned.  Human 

Caco-2 cells were obtained at passage 19 from American Type Culture Collection (Rockville, 

MD) and experiments conducted at passages 39-43. The cells were seeded at a density of 2.85x 

105cells/well in a 12 well collagen treated  cell culture plates and maintained at 37° C and 5% 

CO2  in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS), 1% 

v/v nonessential amino acids and 1% v/v antibiotic-antimycotic solution for 15 days.  On day 15, 

DMEM was removed and serum free media (Glahn et al, 1998) together with supernatant of bean 

digest were incubated for 24 h and cells were harvested by sonication. Total cellular protein was 

determined in the lysates by the Bradford Coomassie Assay and cellular ferritin content 

determined by radioimmunoassay (Fer-Iron II, Ramco Laboratories, Stafford, TX).  Relative 

Biological Availability (RBA) was determined as ferritin per gram of cell protein content and 

expressed as percentage of ferrous ascorbic acid control. 

 

3.2.2.5. Ferritin content 

The ferritin content was determined by western blot procedures using a polyclonal primary anti 

soybean ferritin anti-body followed by densitometry for ferritin quantification. 

Protein and Ferritin Extraction Design: To optimize extraction of ferritin, NABE 6, a small 

white Ugandan bean variety, was used and two variables; bean matrix (whole bean and flour) 

and four  pH buffers (pH 4.5, 6.8, 7.2 and 8) varied.  

Protein extraction: Crude protein extracts were prepared from bean seeds and flours using 

methods described by Lukac et al. (2009) with some minor modifications as follows.  Protein 
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was extracted from previously soaked bean seed with sodium phosphate buffer at pH according 

to experimental design.  Likewise, the flours were soaked in extraction buffer for 4 h with 

shaking on orbital shaker at room temperature.  The homogenate was centrifuged and 

supernatant termed initial extract.  A semi purification procedure was followed by including 

sequential precipitation with 25% MgCl2 and 50% sodium citrate and re-suspension of resultant 

pellet with 10 mM sodium phosphate buffer, at pH 7.2.  This protein fraction was designated the 

final extract. 

 

Protein analysis: The nitrogen content of bean flour was determined using the Dumas method 

(AOAC procedure 990.03) with a Rapid NIII Analyzer (Elementar Americas, Inc., Mt. Laurel, 

NJ) and a nitrogen-protein conversion factor of 6.25 used.  The protein concentration of extracts 

was determined using the Lowry method modified to the micro plate (Fryer et al., 1986).   

Gel electrophoresis: The protein content of all extracts was normalized to 3 mg/mL for western 

blotting and 1.5 mg/mL for SDS PAGE, to ensure a protein load of 60 and 30 µg protein per 

well, respectively.  Where necessary, the proteins were concentrated by ultra-filtration using 

Amicon Ultra-0.5 mL Centrifugal Filters, with Nominal Molecular Weight Limit (NMWL) of 

100 kDa  (Millipore Corporation, Billerica, MA).  Electrophoresis followed procedures 

developed by Laemmli (1979) using 4% mercaptoethanol as reducing agent and 1.5 mm thick, 

15% sodium dodecyl sulfate (SDS) gels in MiniProtean II Electrophoresis Cell and Transfer 

Apparatus (Bio-Rad, Hercules, CA).  The gels (1.5 mm) were either stained with Coomassie blue 

R-250 in fixative and destained with 40% methanol/10% acetate to detect separated protein 

bands or used for western blot. 
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Western blot: Proteins from the SDS gel were transferred to Immobilon-PSQ (a 0.2 µm micro 

porous polyvinylidene fluoride (PVDF) transfer membrane (Millipore Corporation, Billerica, 

MA) according to the methods described by Towbin et al. (1979).  Following transfer, the 

proteins were probed with anti-soy ferritin polyclonal antibody (1:500) and horseradish alkaline 

phosphatase (AP) -conjugated goat anti-rabbit secondary antibody (1:5,000) and color developed 

with standard chromogenic detection protocols using AP conjugate substrate kit (Bio-Rad 

Laboratories, Hercules, CA). 

 

Densitometry: Blots and SDS PAGE gels, after color development and fixation respectively, 

were allowed to dry at room temperature (for blots) and a digital image captured using GS-800TM 

Calibrated Imaging Densitometer (Bio-Rad Laboratories, Hercules, CA).  The absorbance of 

bands at was measured using Image J free software (http://rsbweb.nih.gov/ij/).  For western blot 

densitometry, observed absorbance values were converted to ng ferritin per gram of bean seed 

using known amount of rFerr as a standard. 

Non- heme iron: Non Heme iron content in bean flours was measured colorimetrically after 

trichloacetic acid (TCA) digestion, using methods proposed by Swain et al., (2002).  Flour (0.25 

g) was mixed with  0.5 mL 10% TCA/3 N HCl in a 15 mL centrifuge tube, capped and incubated 

for 20 h at 65 °C.  The sample was cooled and centrifuged at 3,000 rpm for 15 min.  The 

supernatant was mixed with ferrozine [3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4’,4”-disulfonic 

acid sodium salt] as a chromogen in a micro plate, incubated for 10 min and absorbance of color 

product measured at 563 nm using KC Junior software (version 1.14) and Micro Plate Reader 
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(ELx808; Bio-Tek Instruments, Inc., Winooski, VT).  Iron concentration was measured against 

an iron standard curve (made from atomic absorption standard solution, 1mg/mL).   All the water 

used was 18MΩ dd water and all glassware had been soaked overnight in 1N HCl and rinsed 

three times in 18MΩ water. 

 

3.3. Statistical analysis 

The results were expressed as means (±SD) and Analysis of Variance (ANOVA) was done to 

determine the significant differences among means followed by Tukey-Kramer multiple 

comparison test when the F-test demonstrated significance of differences among means. To 

assess the interactive effect of bean matrix and extraction buffer pH, two-way ANOVA was 

used.  Multiple linear regression with interactions was used to model relationships between bean 

composition and iron bioavailability.  Data from each assay (n=3-6) were averaged prior to 

statistical modeling. The differences were considered statistically significant at P<0.05.  

Analyses were performed using SAS software, version 9.2 (SAS Institute Inc. Cary, NC). 

 

3.4.  RESULTS AND DISCUSSION 

3.4.1.  Modeling iron bioavailability 

Table 3.1 shows iron, polyphenol, ferritin and phytic acid content of beans as well as the 

Relative Biological Availability (RBA) of bean iron. There were significant differences (P<0.05) 

in the bean composition and iron bioavailability.  Polyphenol content of raw beans (reported as 

catechin equivalents) ranged from 0.2 to1.76 mg/g and was lowest in the white seed coat 

varieties.  The Folin’s reagent assay used in this study quantified total polyphenol content while 
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the acidified methanol used for extraction has been shown to maximize yield of total polyphenols 

from foods (Ju et al., 2003; Ranilla et al., 2009).  Total phytic acid content ranged from 0.19 

to1.6 g/100g while iron content ranged from 57 to 91µg/g and ferritin content varied from 285 to 

495 µg/g.  The phytic acid content of beans used in this study compared well with results 

reported in literature for beans (0.2-2.8%) (Reddy 2001).  Iron content was also in the range (30-

90 µg/g) reported for market classes (Graham et al., 1999; CIAT, 2008; Beebe et al., 2000) of 

bean seed and was significantly (P<0.001) different among bean varieties, lowest in NABE2, the 

small black variety and highest in NABE14, a red variety.  The RBA of autoclaved beans ranged 

from 5.5-34.3% and was significantly different (P<0.0001) among bean varieties.  White seed 

coat varieties had the highest RBA (34.3%) and were significantly different from colored seed 

coat varieties (5.5-9.8%).  Table 3.2 shows significant model terms relating iron bioavailability 

and bean composition.  A fixed effects multiple regression model (P-value=0.0028, R2=0.68) 

showed negative effects of polyphenol and iron, while their interaction was positive (Table 3.2).  

 

Numerous studies have reported a polyphenol content of beans in the range of 0.19 to 0.48 mg/g 

seed and shown that bean seed coat color is a function of polyphenol content (Elias et al., 1979; 

Bressani and Elias, 1980; Hu et al., 2006, Luthria and Pastor-Corales, 2006).  Bean seed coat 

color is determined by the presence and amounts of different types of flavonoids  (flavonol 

glycosides, anthocyanins, and condensed tannins/proanthocyanidins) (Takeoka et al.,1997; 

Beninger et al.,1998).  Though the inhibiting effect of polyphenols on iron absorption has largely 

been demonstrated, the capability of complex formation with iron depends on their structure.  

Colored bean seed coats contain polyphenols with ortho-dihydroxy (catechol) or 
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trihydroxybenzene group (galloyl) such as proanthocyanidins (catechol groups) and hydrolysable 

tannins (galloyl groups) which are the most potent iron absorption inhibitors (Brune et al., 1989; 

Hurrell et al., 1999; Hu et al., 2006).  On the other hand, white seed coat beans contain phenolic 

acids, but not anthocyanins or condensed tannins (Choung et al., 2003; Espinosa-Alonso et al., 

2006; Hu et al., 2006) which may explain the observed high iron bioavailability.  Numerous 

previous workers have shown significantly higher iron bioavailability of white seed coat varieties 

as compared to colored ones (Welch et al., 2000; Hu et al., 2006; Ariza-Nieto et al., 2007; Tako 

and Glahn, 2010).   

 

The inhibitory effect of phytic acid on iron absorption was not significant in this study.  This is 

regardless of the fact that phytic acid has been shown to be a strong inhibitor of iron absorption 

in a dose dependent manner (Hallberg, 1989; Hurrel et al., 1992, Pertry et al., 2010).  In the 

presence of polyphenols, phytic acid effect may not be significant; but once polyphenols are 

removed from the same food matrix, the effect of phytic acid becomes significant (Petry et al., 

2010).  The effect of ferritin was also not significant in this study.  This could be explained by 

the fact that in vitro digestion was carried out at physiological pH (pH 2) at which ferritin is 

susceptible to degradation (Hoppler et al., 2008, Deng et al., 2011; Li et al., 2012).  The 

associated iron is released to interact with phytates and polyphenols; just like any other non-

heme iron.  Also, the fraction of total bean seed iron stored by ferritin may have been low.  

Hoppler et al. (2008) reported that only 20 and 25% of the total seed iron in white and red kidney 

beans was bound to ferritin respectively, a result which was confirmed by Cvitanich et al. (2010).  

The latter authors showed that the largest portion of iron is found in the cytoplasm of cells 
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surrounding the provascular tissue and cells near the epidermal layer.  Further, the range of 

ferritin used in this study was too narrow (285-495 µg/g) and the standard deviation too high, 

which may explain the non-significant contribution of the factor to the model.  A wider 

composition range and a more reliable assay are required to further study this parameter.  The 

negative effect of iron on iron bioavailability observed in this study shows that increasing iron 

content in presence of inhibitors may not necessarily increase percentage absorbable iron 

(Donangelo et al., 2003; Hu et al., 2006; Petry et al., 2012) though total iron absorbed may 

increase (Tako et al., 2009; Tako et al., 2011).  Thus, to optimize iron bioavailability, future 

biofortification programs ought to breed for low polyphenol and low phytic acid as well as high 

iron bioavailability.   

Effect of ascorbic acid: Ascorbic acid is usually added to Caco-2 cell culture models to amplify 

iron uptake and its effect is assumed to be uniform across food matrices.  This study aimed at 

establishing validity of this assumption in a bean food matrix.  Table 3.3 shows relative 

bioavailability of beans with or without added 0.1mM ascorbic acid.  We added ascorbic acid to 

digested bean samples to compare the beans with improved ferritin response.   Ascorbic acid 

increased iron bioavailability in colored varieties but not in white seed coat ones.  However, the 

relative bioavailability of white seed coat variety was still significantly higher (P<0.0001) than 

that of colored ones even in the presence of ascorbic acid.  Ascorbic acid is a known enhancer of 

iron bioavailability (Hallberg, 1989).  However, its effect may be dependent on the food matrix.  

Hu et al., (2006) reported enhancement of iron bioavailability of white seed coat varieties but not 

the colored seed coat ones in a Caco-2 cell culture model.  The iron uptake from colored seed 

coat varieties was not significantly different from the control blank and 0.1mM ascorbic acid did 
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not significantly enhance bioavailability, an effect they related to the polyphenol content of 

colored seed coat varieties.  The authors also showed that dehulling significantly reduced 

polyphenol content and enhanced bioavailability.  Thus, the effect of ascorbic acid on iron 

uptake from beans in Caco-2 cell culture may be dependent polyphenol content, which in turn is 

genetically controlled.  However, it is not clear why ascorbic acid did not enhance iron 

bioavailability of white seed coat varieties in the current study.  

3.4.2.  Optimization of ferritin extraction 

The methodology used to determine ferritin content in this study is novel (Lukac et al., 2009) and 

we aimed to optimize it with respect to extraction buffer pH and the form of seed used (whole 

seed vs. bean flour).  We hypothesized that a pH near the pI of phaseolin (the major bean storage 

proteins with a pI of 4-5) would eliminate this fraction and reduce competition for ferritin (pI of 

6.0) binding to anti-body in the western blot assay.  Figure 3.1 shows the percentage of total seed 

protein that was extracted from the seed and flour fractions (designated initial protein extract); 

and that retained after the semi-purification procedure (final protein extract) of NABE 6.  Total 

protein content of the bean variety used was 23.3%.  Of this, the percent protein extracted with 

buffer (initial protein extract) ranged from 41±2 to74±5%.  Table 3.4 shows two-way analysis of 

ANOVA showing effect of pH, seed matrix and their interaction on initial and final protein 

extraction.  pH, seed matrix and pH*seed matrix interaction significantly (P<0.05) affected 

amount of protein extracted, increasing with increase in pH and in flour matrix.  The final protein 

extract after semi-purification ranged from 0.002±0.0006 to 0.009±0.0012%.  Extraction buffer 

pH significantly (P<0.05) increased final protein extracted where as neither seed matrix nor seed 

matrix*pH interaction were significant.  
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Figure 3.2 shows SDS-PAGE gels of initial and final extracts.  Five bands with molecular weight 

ranging from 30 to 47kDa (probably globulins, 7S and 11S) dominated in all samples, 

accounting for over 80% of the total proteins.  Phaseolin (7S) is soluble at all pH and its N-

glycosylation may contribute to further increased solubility at neutral and weak alkaline pH 

(Kimura et al., 2008).  On the other hand, bean 11S globulins are poorly soluble at a low pH 

(<pH 5) but are fairly soluble near pH 2 mainly due to high content of acidic amino acids 

(Kimura et al., 2008).  Solubility of albumins (represented by the 27kDa band of 

Phytohemagglutinins) is independent of pH mainly due to the high content of carbohydrates 

(Mundi and Aluko, 2012) and yield was constant in the initial extract. 

 

Figure 3.3 shows western blot comparing effect of buffer pH and semi-purification procedure on 

ferritin yield.  The polyclonal anti-soy ferritin primary antibody used in this study gave two 

bands with bean extracts; a distinct band with a molecular weight of 27-28kDa corresponding to 

the molecular weight of bean ferritin subunits and double band corresponding to the molecular 

weight of phaseolin (47-52 kDa).  The latter band was ignored in all ferritin quantification 

procedures as it was considered a cross reaction of the less specific polyclonal antibody. A 

similar banding pattern was seen in higher concentrations of the rFer standard. Yield of ferritin 

increased with increase in pH (Figure 3.3) and was maximum at pH 8.  The ferritin content of the 

initial, discarded supernatant and final extract of the flour matrix extracted at pH 8 was 230, 134 

and 28µg/g of seed respectively, showing significant loss of ferritin in the discarded supernatant 
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fraction.  Therefore, all further ferritin quantification procedures made use of the initial extract 

from bean flour, eliminating the need for semi-purification procedure. 

 

Our results for percentage protein and ferritin extracted at pH 7.2 were similar to those obtained 

by Lukac et al. (2009) from a red bean whole seed with a similar protein content and extraction 

buffer concentration. However, pH 8 and flour matrix were found to be the optimal protein 

extraction conditions in the bean variety studied. Alkali pH is more efficient in solubilizing 

protein from beans because phaseolin (pI of 4-5) and ferritin (pI of 6.0) have pI in the acidic 

range (Danielsson, 1949; Sathe and Salunkhe,1981a,b; Kimura et al., 2008). Of the parameters 

known to affect protein solubility, pH, temperature, ionic strength and type of salt were shown to 

be the most important (Sathe et al., 1984). These authors recommended use of low concentration 

alkalis at pH >7.5 for better protein solubilization efficiency. Also, the compact structure of 

globulins is thought to influence solubility. Hydrophilic groups on these proteins may be buried 

in the interior of the molecule, thus not exposed under neutral pH environment, but may be 

exposed and ionized with increasing pH (Sathe et al., 1984).   

 

Ferritin content from the semi purified fraction was similar to results obtained by Lukac et al. 

(2009) and that from the initial extract matched results obtained by Deng et al. (2011) for beans 

and Laulhere et al. (1988) for soybean.  The polyclonal antibody used by Lukac et al.(2009) was 

developed against a highly conserved ferritin sequence from maize ferritin and could have been 

less immunogenic than the one used in this study (developed against soy ferritin) explaining the 

failure of the former to detect ferritin in the initial extract.  The anti-ferritin primary antibody 
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used in this study was able to detect ferritin from the crude extract and we believe gave better 

quantification.  This study showed that extracting protein at a pH near the pI of phaseolin (pI 4.5) 

eliminated this particular fraction from the extract but also limited extraction of ferritin.  

However, both total protein and ferritin yield increased with increase in buffer pH and were 

higher in flour than seed matrix. 

 

3.5 Conclusions  

The study showed that in the complex bean matrix containing inhibitors (polyphenols and phytic 

acid) and possible promoters (iron and ferritin), contribution of individual factors is complex and 

difficult to model.  In this study, only iron and polyphenol content were significant model terms 

and iron bioavailability could be indirectly screened by seed coat color; with white seed coats 

showing higher bioavailability than colored ones.  Polyphenol, a known inhibitor of iron 

absorption significantly decreased iron bioavailability while interaction with iron increased it.  

Effects of ferritin and phytic acid were not significant in the bean varieties studied.  Contribution 

of ferritin to the model could have been hindered by the narrow composition range and high 

residual error associated with western blot optical densitometry.   
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Table 3.1: Iron, phytate, ferritin and total polyphenol content of 16 Ugandan bean varietiesa 

Variety  
Color  

Total polyphenol 
(mg/g) 

Iron (µg/g) Phytate (%) Ferritin (µg/g)b 

NABE 1 Red mottled 1.25 ± 0.07 bc 78.9 ± 9.2 b 1.12 ±0.16 cde 357 ± 34 bcdef 

NABE 2 Black 0.79 ± 0.05 d 62.6 ± 0.8 efg 0.50 ± 0.01 def 285 ± 36f 

NABE 3 Red 1.61 ± 0.02 ab 75.3 ± 1.3 bc 0.46 ± 0.03 def 444 ± 56 abcd 

NABE 4 Red mottled 1.39 ± 0.26 b 64.5 ± 1.5 e 0.55 ± 0.13 def 479 ± 113 ab 

NABE 5 Cream/Red 1.66 ± 0.02 a 70.5 ± 2.0 cd 0.28 ± 0.01 ef 384 ± 35 abcde 

NABE 6 White 0.20 ± 0.02 e 58.9 ± 0.1 fg 0.80 ± 0.02 cd 353 ± 102 bcdef 

NABE 7 Red 1.42 ± 0.07 b 57.4 ± 0.6 g 0.30 ± 0.03 ef 293 ± 47 ef 

NABE 8 Red 1.26 ± 0.07 bc 79.9 ± 1.2 b 0.60 ± 0.05 cdef 390 ± 113 abcdef 

NABE 9 White/Black 1.06 ± 0.01 c 67.0 ± 1.8 de 0.25 ± 0.03ef  344 ± 9 cde 

NABE 10 Red 1.60 ± 0.11 ab 64.7 ± 1.8 e 0.60 ± 0.37 cdef 293 ± 31ef  

NABE 11 Cream/Red 1.25 ± 0.04 bc 65.4 ± 2.2 de 0.19 ± 0.06 f 325 ± 29 def 

NABE 12 Cream/Red 0.99 ± 0.10 c 87.3 ± 4.2 a 0.66 ± 0.01 cde 313 ± 79 ef 

NABE 13 Red 1.10 ± 0.03 c 63.5 ± 3.4 ef 1.61 ± 0.07 a 419 ± 29 abcde 

NABE 14 Red 1.76 ± 0.29 a 90.6 ± 3.1 a 1.01 ± 0.12 bc 495 ± 96 a 

K131 Brown  1.76 ± 0.15 a 67.8 ± 2.7 de 1.01 ± 0.20 bc 304 ± 95 ef 

K132 Red mottled 1.06 ± 0.08 c 75.0 ± 2.7 bc  1.31 ± 0.12 ab 470 ± 120 bc 
aValues are means±SD; n=4-6; b Ferritin extracted from bean flour.  Within each column, mean values 
with a letter in common are not significantly different from one another (P<0.05). 
 
 
 
Table 3.2: Significant model terms relating iron bioavailability and bean compositiona 

Independent variable  Parameter estimate  p-value  R2 

Model 95.6 0.0028 0.68 

Polyphenol  -64.7 0.0008  
Iron  -1.1  0.0166  
Polyphenol*iron  0.8  0.0133  
a Fixed effects multiple linear regression modeling was used 
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Table 3.3: Relative biological availability of iron from 16 Ugandan bean varieties with or 
without added ascorbic acida 

Variety  RBA (%)  
 No added ascorbic acid With 0.1mM ascorbic acid 

NABE 1 7.6 ± 2.7 b 13.2±2.6b 
NABE 2 5.5 ± 1.0 b 13.7±2.8b 
NABE 3 6.2 ± 0.8 b 13.8±2.0b 
NABE 4 7.6 ± 1.6 b 13.9±3.2 b 
NABE 5 8.4 ± 1.7 b 10.1±0.8 b 
NABE 6 34.3 ± 10 a 38.5±3.2 a 
NABE 7 8.1 ± 1.8 b 11.3±1.2 b 
NABE 8 9.1 ± 0.8 b 13.5±4.0 b 
NABE 9 5.5 ± 0.9 b 13.1±5.8 b 
NABE 10 6.4 ± 1.9 b 15.0±7.4 b 
NABE 11 8.7 ± 0.9 b 15.8±5.0 b 
NABE 12 8.4 ± 1.0 b 16.2±3.7 b 
NABE 13 9.8 ± 1.0 b 18.4±4.4 b 
NABE 14 8.8 ± 0.7 b 14.6±1.6 b 
K131 6.2 ± 0.3 b 10.2±0.8 b 
K132 6.1 ± 2.4 b 11.7±2.9 b 
aValues are means ± SD; n=6; Within each column, mean values with a letter in common are not 
significantly different from one another (P<0.05).   
 

Table 3.4: Two way analysis of variance (ANOVA) showing P-values relating independent 
variables (pH and seed matrix) to percentage initial and final protein content extracted  

Source of variation P value 
Initial Final extract  

pH <.0001 0.7502 
Matrix 0.0046 <.0001 
pH*Matrix 0.0291 0.2036 
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Figure 3.1: Percentage of total seed protein retained at different levels of purification (initial 
protein extraction and after the semi purification process). Mean ±SD, n=3. Bars with no 
common letter were significantly different at P<0.05 within each treatment (initial protein 
extraction and protein after purification). 

 

 

Figure 3.2: SDS-PAGE gels of initial (left) and final  (right) protein extract (30µg protein/lane) 
under reducing conditions. 

Key: Lane 1: pH 4.5 seed; Lane 2: pH 4.5 flour; Lane 3: pH 7.2 seed; Lane 4: pH 7.2 flour; 
Lane 5: MW Marker, Lane 6: pH 8 seed, Lane 7: pH 8 flour; Lane 8: pH 6.8 seed; Lane 9: pH 
6.8 Flour  

 

 

 

66 

45 

36 

29 
24 

1 2 3 4 5 6 7 8 9 

66 

45 

36 

29 
24 

1 2 3 4 5 6 7 8 9 

a 

c 

ab 

bc 

d 

abc abc abc 

b 
bc 

cd cd 

bc 

d 

abc 

a 



www.manaraa.com

101 

 

 

 

 

 

 
Figure 3.3: Western blot showing ferritin (27kDa band) content of initial and final extract as well 
as loss in discarded supernatant (protein load, 60µg/lane for samples). 

Key: Lane 1: Initial extract pH 4.5; Lane 2: Initial extract pH 6.8; Lane 3: Initial extract pH 7.2; 
Lane 4: Initial extract pH 8; Lane 5: MW Marker; Lane 6: Ferritin lost to semi-purification (pH 
8); Lane 7: Final extract pH 8; Lane 8: Standard rFer (320ng/lane) 
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CHAPTER 4. OPTIMIZATION OF WHITE COMMON BEANS 

(PHASEOLUS VULGARIS) EXTRUSION COOKING PROCESS 

Mutambuka M, Murphy PA, Hendrich S, Reddy MB, Lamsal PB 

Department of Food Science and Human Nutrition, Iowa State University 

 

A paper in preparation for submission to the Journal of Agricultural and Food Chemistry 

 

Abstract  

Extrusion cooking process variables; raw material moisture content (15-35 % wb), extruder die 

temperature (120-175 °C) and feed flow rate (1.8-3 kg/h) were optimized with respect to iron 

bioavailability, final viscosity and overall consumer acceptability of a small white bean variety.  

An in vitro digestion/Caco-2 cell culture model was used to determine iron bioavailability as 

Relative Biological Availability (RBA) and Response Surface Methodology (RSM) techniques 

used for process optimization.  RBA of extruded beans ranged from 54 to 389%, a 1.5-10 fold 

increase on that of autoclaved beans (34.3%).  However, there was an increase in iron content of 

extrudates indicating possible contamination from extruder parts; partly explaining the increase 

in bioavailability.  The analysis of variance for the thirteen responses studied indicated that 

predictive models were significant for seven of the responses with the three variables explaining 

32 - 78% of the variability.  The coefficients of each response showed extruder die temperature 

had a significant effect on each significant response, decreasing all sensory properties, expansion 

ratio and pasting viscosities while increasing iron bioavailability.  Linear effects of moisture 

content and flow rate reduced pasting viscosity but increased iron bioavailability while their 
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interaction had opposite effects.  The optimal combination of extrusion variables was 15% 

moisture content, 120 °C die temperature and 3 kg/h feed flow rate.  Model validation 

experiments’ results revealed that expansion ratio, peak and final viscosity could be reliably 

predicted but RBA was below the lower limit of prediction.   

Key words 

Common beans, extrusion cooking, iron bioavailability, optimization, RSM 

4.1 INTRODUCTION 

Common beans (Phaseolus vulgaris) are an important staple in many parts of South America, 

Africa and Asia where they are a prime source of iron.  In spite of the high iron content (30-190 

ppm) (CIAT, 2008), its bioavailability is very low (<5%) due to high polyphenols and phytic 

acid content (Donangelo et al., 2003; Petry et al., 2012).  These act by forming insoluble 

complexes with dietary iron in the gastro-intestinal tract thus inhibiting its absorption.  The 

dependence on low iron bioavailability crop staples is the major nutritional cause of iron 

deficiency, the most prevalent micronutrient deficiency in the world (WHO, 2010).  Iron 

deficiency is the primary cause of anemia, whose effects include increased mortality and 

morbidity, decreased labor productivity, and impaired neurological/mental development 

(Stoltzfus, 2001).   

House hold and commercial processing technologies (soaking, germination/malting, heat 

treatment) have been shown to reduce the concentration of anti-nutritional factors and increase 

iron bioavailability (Alonso et al., 2001).  Extrusion cooking has been shown to increase iron 

bioavailability through hydrolysis of polyphenols and phytates (Alonso et al., 2001; Hurrel et al., 

2002).  Extrusion cooking is a high temperature-short time processing technology that effects 
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product cooking by a combination of moisture, pressure, temperature and mechanical shear.  In 

addition to enhancing iron bioavailability, extrusion cooking reduces pasting viscosity and anti-

nutrition factor content, and improves consumer acceptability (Edwards et al., 1994; Nyombaire 

et al., 2011).  Reduced pasting viscosity is important for sauces and porridges as it maximizes 

flour rate and increases nutrient density. 

Literature on effect of extrusion cooking on nutritional, physicochemical and sensory properties 

of beans is limited and there is thus need to optimize system parameters in order to maximize 

product characteristics.  System parameters (e.g. mechanical and thermal energy inputs, and the 

residence time distribution) unlike operating conditions, are valid for different machines and are 

preferred in optimization studies (Meuser et al., 1992).  However, in this study, two processing 

conditions (raw material moisture content and feed flow rate) and one system parameter 

(extruder die temperature) were varied.  The mechanical energy input (defined as Specific 

Mechanical Energy-SME) was not determined since the machine did not have provision for 

measuring %Torque; and feed flow rate was preferred to screw speed as a proxy to SME 

because, from trial runs, it gave a wider operating range.   

This study therefore aimed at optimizing extrusion cooking process variables with respect to iron 

bioavailability, pasting viscosity and consumer acceptability of small white bean flour.  

Response surface methodology (RSM) was used as a tool for optimizing factor combinations to 

achieve specific pre-set product outcomes.  We hypothesized that optimizing a combination of 

extrusion cooking parameters will significantly improve iron bioavailability, pasting viscosity 

and consumer acceptability of beans through elimination of anti-nutritional factors and 

enhancement of desirable flavor.  
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4.2 MATERIALS AND METHODS 

4.2.1. Materials 

NABE6, a small white seed coat bean variety from Uganda, was used.  Seed from National 

Crops Resources Research Institute (NaCRRI), Kampala, Uganda was multiplied at the Iowa 

State University Horticulture Farm in Gilbert, IA in the summer of 2011.  Clean seed was rough 

milled to pass through US standard 1531 0125 sieves using a Fitzpatrick Impact (comminuting) 

mill (Fitzpatrick, Elmhurst, IL) at 4500rpm.  Flours were stored at 4°C until processing.  All 

chemicals and reagents were purchased from Aldrich Chemical Co Inc. (Milwaukee, WI) and 

Sigma Chemical Co (St. Louis, MO), unless specified and the water used for processing and 

analysis was 18Ω deionized distilled water.  

 

4.2.2. Extrusion design  

Extrusion of the bean flour was performed in a Brabender twin screw co rotating extruder 

(Model CTSE-Y, Brabender Instruments Inc., S. Hackensack, NJ) with a screw length to 

diameter ratio of 13:1 and four heating regions.  Table 4.1 shows the three independent variables 

that were selected for optimization; raw material moisture content, die temperature and feed flow 

rate and their ranges.  The temperature in each of the four heating regions was increased by 20 

°C from the preceding region along the barrel towards the die end.  In this study, the temperature 

of the extruder barrel at the die end was varied according to the study design and that of each of 

the preceding 3 regions reduced by 20°C respectively.  The ranges of the independent variables 

were established experimentally by running different combinations of the variables to determine 

the possible working range applicable to the material and the extruder.  The extruder was 

operated at 50 rpm and an attached feeder (Screw speed hopper, Type 15-31-00,  Brabender 
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Instruments Inc., S. Hackensack, NJ) was set to deliver 1.8-3 kg/hr of raw material according to 

the research design.  Moisture content of the raw material varied between 15-27.5% wb 

according to the design.  The extrudates were allowed to cool to room temperature, dried at 50°C 

overnight in conventional oven and milled in a comminuting Fitzpatrick Impact mill (Fitzpatrick, 

Elmhurst, IL) at a speed of 4500 rpm to pass through a 0.5 mm sieve. 

 

Table 4.2 shows the D-Optimal experimental design generated by Design Expert Statistical Soft-

ware (Design expert 7.1.6, Stat-Ease Inc., Minneapolis, MN; 2007), consisting of 10 model 

points, 4 points to estimate lack of fit, 4 replicates and 2 additional center points.  

   

4.2.3. Analytical methods 

4.2.3.1. Moisture content 

The moisture content was determined by AOAC method 925.09 using a convectional drying 

chamber (AOAC, 1999).  Two grams of bean flour were weighed on to an aluminum moisture 

dish and dried at 125 °C for 3 h, cooled for 5 min in a desiccator and a final dry weight 

measurement made. 

 

4.2.3.2. Polyphenols 

Polyphenol content was measured colorimetrically as catechin equivalents by Folin-Ciocalteau 

reagent after methanol/water/acetic acid (75:30:5) extraction according to procedures by 

Zielinski and Kozlowska (2000) with minor modifications as below.  One gram of sample was 
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extracted with 20 mL Methanol/Water/Acetic acid solution for 2 h at 4°C on a mechanical 

shaker.  The samples were then centrifuged at 10,000xg for 10 min at 4°C and the supernatant 

filtered through #1 Whitman filter paper.  A 0.25 mL aliquot was then mixed with 0.25 mL of 

1N Folin-Ciocalteau reagent and 2 mL distillated water.  After 3 min at room temperature (but 

less than 8 minutes), 0.25 mL of a saturated sodium carbonate solution was added and the 

mixture placed at 37 °C in a water bath for 30 min.  The absorbance was measured at 750 nm 

using a UV/vis spectrophotometer (SpectronicR 21D, Spectronic Instruments). (+)-Catechin was 

used as the reference standard and the results were expressed as mg of catechin equivalents/g 

sample. 

 

 4.2.3.3. Iron bioavailability  

Iron bio-availability was determined according to methods proposed by Proulx and Reddy (2006) 

using in vitro digestion/Caco-2 cell culture model.  Ferritin synthesis by the Caco-2 cells was 

used as a measure of iron absorption.  The procedures are briefly described below.  

In vitro digestion of bean flours: Extruded bean flour was sequentially digested with pepsin (at 

pH 2) and pancreatin (at pH 6) to simulate gastric and duodenal digestion and enzyme activity 

stopped by heat treatment for 4 min in boiling water.  A ferrous ascorbic acid (1:20 molar ratio) 

solution was included as a positive control.   

  In a separate set of samples, 0.1mM ascorbic acid was added to increase ferritin response. 

 

Iron bioavailability in Caco-2 cells: All reagents for cell culture work were from Sigma 

Aldrich (St Louis, MO) or Gibco BRL (Grand Island, NY) unless otherwise mentioned.  Human 
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Caco-2 cells were obtained at passage 19 from American Type Culture Collection (Rockville, 

MD) and experiments conducted at passages 39-43. The cells were seeded at a density of 2.85x 

105cells/well in a 12 well collagen treated cell culture plates and maintained at 37° C and 5% 

CO2  in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS), 1% 

v/v nonessential amino acids and 1% v/v antibiotic-antimycotic solution for 15 days.  On day 15, 

serum free media (Glahn et al, 1998) and supernatant of bean digest were incubation for 24 h and 

cells harvested by sonication. Total cellular protein was determined in the lysates by the 

Bradford Coomassie Assay and cellular ferritin content determined by radioimmunoassay (Fer-

Iron II, Ramco Laboratories, Stafford, TX).  Relative Biological Availability (RBA) was 

determined as ferritin/g protein of samples expressed as percentage of ferrous ascorbic acid 

control. 

4.2.3.4. Non-heme iron 

Non Heme iron content in bean flours was measured colorimetrically after trichloacetic acid 

(TCA) digestion, using methods proposed by Swain et al., (2002).  Flour (0.25 g) was mixed 

with  0.5 mL 20% TCA/6 N HCl in a 15 mL centrifuge tube, capped and incubated for 20 h at 65 

°C.  The sample was cooled and centrifuged at 3,000 rpm for 15 min.  The supernatant was 

mixed with ferrozine [3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4’,4”-disulfonic acid sodium 

salt] as a chromogen in a micro plate, incubated for 10 min and absorbance of color product 

measured at 563 nm using KC Junior software (version 1.14) and Micro plate Reader (ELx808; 

Bio-Tek Instruments, Inc., Winooski, VT).  Iron concentration was measured against an iron 

standard curve (made from atomic absorption standard solution, 1mg/mL).   All the water used 
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was 18MΩ dd water and all glassware had been soaked overnight in 1N HCl and rinsed three 

times in 18MΩ water. 

4.2.3.5. Pasting properties of raw and extruded samples 

Extruded and raw bean flour pasting properties were analyzed using an RVA (RVA-4, Newport 

Scientific, Sydney, Australia) according to the manufacturer’s methodology.  Briefly, an 11% 

(w/w) flour suspension was prepared by weighing 3.23 g (dry basis) bean flour into an RVA 

canister and making up the total weight to 30 g with distilled water.  The sample suspension was 

equilibrated at 30 °C for 1 min, heated at a rate of 6.0 °C/m to 95°C, maintained at that 

temperature for 5.5 min, and then cooled to 50°C at a rate of 6.0 °C/min. A constant rotating 

speed of the paddle (160 rpm) was used throughout the analysis. 

 4.2.3.6. Expansion ratio 

After drying extrudates, the average diameter of 10 randomly selected extrudates were measured 

for each treatment using a Vanier caliper.  The ratio of the mean diameter of extrudates to the 

diameter at die end of extruder barrel was calculated as the expansion ratio. 

 4.2.3.7.  Sensory evaluation of extruded bean flour porridges  

An untrained consumer panel comprising of 60 students and staff members, aged 18-65 years, 

from Makerere University, School of Food Technology, Nutrition and Bio-engineering tasted 

bean flour porridges over a two day period.  Two sessions were conducted per day (9am-1pm 

and 2-5pm) and each panelist attended one session per day.  Panel members were chosen basing 

on their availability and willingness to participate and were required to sign a consent form (refer 

to Appendix I) consistent with the Institutional Review Board of Iowa State University and 

Uganda National Council of Science and Technology.  Demographic information on sex, age, 
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porridge consumption patterns was provided by the panelists (See Appendix II).  A 150 mm 

unstructured line scale anchored at dislike extremely and like extremely was used for evaluating 

the products (Meilgaard et al., 1991; Moskowitz, 1994; See Appendix III).  Porridges were 

prepared by thoroughly mixing 5 table spoonfuls of extruded flour with half a cup of cold water 

until all lumps were broken and the slurry smooth.  One liter of hot water was added and stirred 

in to make a smooth paste which was then simmered over an open flame for 10 minutes.  A little 

hot water was added to the simmering gruel until a consistency typical of traditional Ugandan 

hot maize porridge was obtained.  The products were stored in vacuum flasks until served to 

panelists.  An aliquot of 10-20  mL of porridge were served in transparent disposable plastic 

cups, which were in turn placed on serving trays along with a bottle of mineral water, an empty 

spit cup and four crackers to act as palate cleansers in between samples.  Each panelist received 

sequentially seven coded samples in a randomized order according to a balanced incomplete 

block design (Plan 11.35, t = 21, k = 7, r =10, b = 30, λ= 2, E = 0.9, type III) described by 

Cochran and Cox (1957).  Where t=number of treatments, k=number of samples per panelist, r= 

replicates, b= number of panelists.  This design was replicated four times to achieve a replication 

rate of 40 analyses per sample.  The panelists then evaluated organoleptic attributes with respect 

to taste, color, flavor, texture and overall acceptability in individual booths with white 

fluorescent lights, using the above line scale.  Panelist ratings form each ballot were measured 

off in mm with a metric ruler and recorded as unit less measures of consumer acceptability 

(Table 4.2). 



www.manaraa.com

111 

 

 

 

4.2.3.8. Validation experiments 

Two different processing conditions were selected to test the validity of the regression model as 

shown in Table 4.4. The extrusion cooking process was identical to that described in the previous 

experiment. Measurements of nutritional and physicochemical characteristics of extruded bean 

flour were performed as described earlier. 

4.2.4. Statistical analysis 

Response surface methodology procedures were used to develop regression models relating 

product quality characteristics to the processing variables.  The following second order 

polynomial model for the dependent variables was developed; 

Y= β0+ β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3 + β7x1
2+ β8x2

2+ β9x3
2  to fit the 

experimental data (where Y=dependent variable, β=coefficient, x=independent variable).  

ANOVA was used to determine significant model terms.  Desirability Function Approach (DFA) 

was used for multiple response optimization.  Design expert statistical software (Design expert 

7.1.6, Stat-Ease Inc., Minneapolis, MN; 2007) was used to analyze the data.  

 

4.3.  RESULTS AND DISCUSSION 

The objective was to optimize extrusion cooking process variables; raw material moisture 

content, extruder die temperature and feed flow rate, with respect to sensory, nutritional and 

physicochemical properties of common bean flour.  The small white seed coat bean variety from 

Uganda (NABE 6) was used in this study because it showed significantly higher iron 

bioavailability in earlier studies and also gave an appreciable yield of all Ugandan bean varieties 

that were multiplied at the Iowa State University Horticulture Farm, Gilbert, IA.  Though a 
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balanced incomplete block design was used to assign treatments to panelists in order to reduce 

panelist effect, sensory data was further corrected for this source of error by using adjusted 

means (taking into account panelist effect) using SAS statistical soft-ware.  

 

Effect of independent variables:  Table 4.2 shows chemical composition, %RBA and sensory 

acceptability of extruded beans.  Polyphenol content of extruded bean flour ranged from 0.51-1.81 

mg/g, iron (57-91µg/g), expansion ratio (1-1.8), peak viscosity (69-388 cP), final viscosity (83-671 cP), 

%RBA (54-349) and overall acceptability (59-117 on a 150mm line scale).  ANOVA was used to 

determine significant model terms relating extruder processing variables to sensory, nutritional 

and physicochemical characteristics of extruded bean flour/porridge.  Table 4.3 shows significant 

model terms (P<0.05) for sensory, physicochemical and nutritional properties of extruded bean 

flour/porridge.  Linear effects of moisture content (x1) decreased all pasting properties and 

increased iron bioavailability and extrudate expansion ratio.  Die temperature (x2) had a 

significant linear effect on all significant models, decreasing consumer acceptability of 

appearance, color and overall acceptability; peak and final viscosity but increasing RBA and 

extrudate expansion ratio.  Linear effects of feed flow rate (x3) decreased peak and final viscosity 

but increased RBA.  Interaction effects between moisture content and feed flow rate increased 

peak and final viscosity but decreased RBA.  Interactions between die temperature and flow rate 

were significant for RBA, decreasing it.  There were no significant linear effects of moisture 

content and flow rate on sensory attributes and neither were any interactive or quadratic effects.  

Figures 4.1-4.4 show contour surfaces describing the relationship between extrusion variables 

and sensory properties of resultant porridge, pasting properties and nutritional properties.  Only 
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contours showing curvature i.e. interactive effects are shown.  Contour surfaces of all sensory 

properties lacked curvature, showing a decrease in consumer rating of porridge with increase in 

temperature (contours not shown).  Contour surfaces for pasting properties showed curvature to 

depict the interaction between moisture content and flow rate, maximizing pasting viscosities at 

upper limits of both variables, at constant die temperature.  Response surfaces for iron 

bioavailability showed curvature due to interaction between flow rate and die temperature; which 

interactions maximized iron bioavailability at upper temperature limit and lower flow rate limit.  

 

One of the experimental runs (Run 8: 21.25% moisture content, 175 ⁰C die temperature and 1.8 kg/hr 

feed flow rate) was an outlier in all responses measured and was ignored in subsequent data 

analyses.  The extrudate from this run appeared burnt and had a very high RBA (349%); three 

times the second highest value recorded in the experiment.  Also, the extrudate did not gain any 

appreciable viscosity on pasting suggesting it had undergone significant starch degradation.  

Focus group panelists described porridge from this extrudate as tasting burnt and with a 

consistence more of a soup than porridge.  A replicate of the same run gave results in agreement 

with the rest of the design justifying its elimination from further data analysis.  However, this 

data point shows that it is possible to increase iron bioavailability 10 fold and obtain bean flour 

with no swelling characteristics on pasting.  

 

Die temperature was the only significant model parameter in sensory properties of porridge from 

extruded bean flour.  An increase in die temperature led to a decrease in all consumer ratings.  

Application of high temperatures at low moisture content (<30 %) could have led to brown color 
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pigment formation and development of caramelization products which may reduce consumer 

acceptability of the product (Steel et al., 1995; Bredie et al., 1998).  The darkening may be due to 

reducing sugars that promote non enzymatic browning and the Maillard reaction (Iwe et al., 

2001).  Burnt/beany taste and flavor were also developed.  

 
All three independent variables showed significant negative linear effects on peak and final 

viscosity.  Significant interactions between moisture content and raw material flow rate were 

however positive for both pasting properties.  Extrusion cooking achieves starch modification in 

two important ways; gelatinization and molecular breakdown; which are functions of moisture 

content, temperature and mechanical shear.  Gelatinized starch is characterized by a lack of 

gelatinization peak, a continuous decline in viscosity with shear, and lack of retrogradation.  The 

effect of increasing die temperature on decreasing paste viscosity may be attributed to increased 

thermal and mechanical degradation of starch; which extruded starch shows no further 

gelatinization and retrogradation.  Increase in moisture content and flow rate decreased peak and 

final viscosity though their interaction increased it.  Nyombaire et al. (2011) made a similar 

observation which can be explained by the fact that high moisture content plasticizes the raw 

material under extrusion, reducing effects of mechanical shear.  This will ultimately lead to 

reduced gelatinization of starch and thus a higher paste viscosity.  Likewise, increasing the flow 

rate increases amount of feed in the barrel and reduces effects of mechanical shear. 

Table 4.2 shows that though the model for polyphenol content was not significant, extrusion 

cooking increased polyphenol content.  This is in spite of susceptibility of some polyphenolic 

fractions e.g. caffeic-, ferulic- and p-coumaric acids to thermal breakdown (Dimberg et al., 1996) 

and complexing with non-starch polysaccharides rendering them inextractable.  Increase in 
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polyphenol content can be explained by the fact that white beans are low in polyphenols and heat 

application could have enhanced their extraction.  However, this result is not isolated.   Korus et 

al. (2007) reported an increase (28%) in the total phenolic content in dark red bean cultivar but a 

decrease (30 and 38%) in black-brown and cream cultivars respectively with extrusion cooking.  

The increase in total phenolic content was accompanied by an 84% increase in quercetin content 

of the dark red variety.  Overall, some phenolic fractions decreased while others increased, 

depending on variety and extrusion conditions.  Other studies have however reported reduction 

in total phenolics and tannins with extrusion cooking (Alonso et al., 2001; El-Hady and Habiba, 

2003; Delgado-Licon et al., 2009; Anton et al., 2009).  El-Hady and Habiba (2003) showed that 

soaking followed by extrusion had a greater impact on polyphenol reduction than extrusion 

cooking alone.  Overall, literature suggests that extrusion causes a slight reduction, usually less 

than 25%, in phenolic contents of beans.  Table 4.2 also shows that extrusion cooking 

significantly increased iron content of the extrudates.  Contamination from extruder parts has 

been implicated in increasing iron content of extruded bean flour (Hazell and Johnson, 1989; 

Alonso et al., 2001).  Contamination with iron can also be explained by the fact that the extruder 

used was not used to handling such rough and fibrous material.  Further studies need to be 

carried out in extruders regularly used for beans (or similar material).  Increase in iron 

bioavailability on extrusion cooking could be accounted for by; contamination from wear and 

tear of extruder parts, thermal modification of polyphenolic profiles, thermal hydrolysis of 

polyphenols and phytates and thermal modification of the food matrix to liberate bound iron.  

Korus et al. (2007) reported a decrease in antioxidant and free radical scavenging activity of 

beans on extrusion; which can also be said of metal chelating effect.  Extrusion cooking has been 
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shown to reduce total phytic acid content and to modify distribution of phytic acid profiles. 

Alonso et al. (2001) showed reduction of only 4% in total phytates but after accounting for 

individual inositol phosphates showed that the IP-6 fraction reduced by 26.8%; while both IP-5 

and IP-4 fractions increased.  Tannin content reduced by 70% while iron bioavailability 

increased by 40%.  Earlier, Sandberg et al. (1987) had shown thermal hydrolysis of IP-6 to lower 

inositol phosphates on extrusion cooking on wheat bran.  Inositol phosphates with less than 5 

phosphate groups have been shown to have no iron absorption inhibition capacity (Lönnerdal et 

al., 1989; Sanberg et al., 1999).  

Expansion ratio of extrudates reduced with increase in moisture content but increased with 

increase in temperature.  Expansion ratio is the ratio of the cross sectional area of the extrudate 

relative to the diameter of the die.  It is an important measure of texture as highly expanded 

products are softer to the bite and easy to mill.  Expansion of extrudate occurs due to sudden exit 

of molten mass from a very high pressure in the barrel, via a restricted die, to the atmosphere 

resulting in intensive flash-off of internal moisture and the subsequent expansion of the 

extrudate.  The elastic character of the molten extrudate creates a die swell, which controls the 

overall expansion of the extrudate (Guy, 2001).  Determinants of extent of expansion are 

complex, but chemical composition of the raw material, particle size, temperature and moisture, 

among others are key (Guy, 2001).  The expansion ratio attained in this study was very low.  

Berrios et al., (2004) attributed the low expansion ratio of extruded black bean to formation of a 

limited number of air cells.  These authors showed that extruded bean air cell walls are 

composed mainly of gelatinized starch matrices, cooked protein inclusions, cotyledon bean cell 

wall components and intact cells and seed coat fragments.  Fiber from seed coat at low 
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concentration acts as an air cell nucleating agent and may aid in expansion while at high 

concentration may rupture air cells and reduced expansion.  The high protein content (Guy, 

2001) and coarseness of flour used (Berrios and Pan, 2003) may also be responsible for the low 

expansion observed.  Co-extrusion with sodium bicarbonate has been shown to increase the 

number of air cells with a resultant increase in expansion volume.  The increase in expansion 

ratio with increase in temperature obtained in this study may be due to the plasticizing effect of 

higher temperatures.  With increase in temperature, the extrudate inside the barrel is less viscous 

and easily expands on exiting.  The reduction in expansion ratio with increase in moisture 

content is harder to explain.  Water as a plasticizer contributes to the molten state of the 

extrudate and ought to have increased expansion ratio.   

 

Optimal extrusion conditions: Table 4.4 shows optimal solutions for maximum consumer 

acceptability and iron bioavailability at minimal paste viscosity while Figure 4.5 is an overlay 

plot showing the region at which the dependent variable is not significantly different from the 

optimum.  The optimal combination of extrusion variables was 15% moisture content, 120 °C 

die temperature and 3 kg/h feed flow rate.   

4.4 Validation of regression models and optimum solution 

The adequacy of the predictive models at optimum or near-optimum conditions was tested by 

performing 2 validation experiments. The experiment settings and results are shown in Table 4.5.  

The results showed that expansion ratio, peak and final viscosity could be reliably predicted but 

RBA was below the lower limit of prediction.  Thus, RBA, the most important nutritional quality 

of extruded bean flour studied, could not be predicted by using the regression model developed.  
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This could be due to the fact that the validation cell culture experiment was performed apart from 

the others (different passage numbers), which could have introduced cell batch related 

differences. 

 

4.5 Conclusions 

Extrusion cooking significantly increased iron bioavailability and reduced pasting profile of 

beans, giving consumer acceptable extruded bean flours.  The linear effect of die temperature 

was significant in all significant models.  Only die temperature was significant in sensory 

responses.  All three independent variables were significant in pasting properties and iron 

bioavailability.  Significant interactions between raw material moisture content and feed flow 

rate increased pasting properties but reduced iron bioavailability.  Increasing iron bioavailability 

at minimum pasting viscosity maximizes nutrient density of porridges made from extruded bean 

flour significantly increasing their contribution to iron nutrition of vulnerable population groups.  
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Table 4.1. Independent variables used in the study design and their upper and lower limits 

Independent Variables  Notation  Lower limit  Upper limit   

Moisture content (%) x1  15  27.5  

Die temperature (°C) x2  120  170  

Flow rate (kg/h) x3  1.8 3 
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Table 4.2. Optimization experiment design showing sensory and nutritional properties of extruded bean flour  
Run 
No. 

Independent variables* Dependent  variables 
Moisture 
content 

(%) 

Die 
Temperatur

e (oC) 

Flow 
rate 
(Kg/ 
hr) 

aIron 
(µg/g) 

bPolyp-
henol 
(mg/g) 

cExpansion 
ratio 

dPeak 
viscosity 

(cP) 

eFinal 
viscosity 

(cP) 

fAppea-
rance 

fColor fTaste fFlavor fTexture fOverall 
accepta-

bility 

gRelative 
biological 

availability (%) 

1 21.25 120 1.8 84 0.54 1.1 271 439 108 114 94 91 105 98 98 

2 21.25 175 3 63 0.82 1.6 217 343 85 92 79 80 76 85 94 

3 21.25 120 3 75 0.61 1.0 247 455 118 112 97 87 102 97 111 

4 21.25 175 3 65 0.65 1.4 208 360 95 102 155 102 98 95 57 

5 15 147.5 2.4 71 0.89 1.4 203 356 98 100 80 83 103 84 98 

6 21.25 175 1.8 59 0.99 1.4 177 289 95 96 94 91 129 99 109 

7 21.25 147.5 2.4 57 0.80 1.3 254 435 103 104 82 96 91 99 69 

8 21.25 175 1.8 80 1.81 1.8 69 83 87 86 64 64 83 72 349 

9 21.25 120 3 67 0.55 1.1 247 453 107 110 97 106 110 109 106 

10 21.25 120 1.8 65 0.51 1.0 253 432 113 108 90 94 103 104 59 

11 21.25 147.5 2.4 65 0.67 1.3 235 422 99 96 77 116 94 96 69 

12 15 120 2.4 87 0.67 1.1 306 563 101 106 93 96 100 98 72 

13 27.5 147.5 3 64 0.66 1.3 332 554 102 97 92 100 100 99 55 

14 15 175 2.4 91 1.12 1.8 156 237 61 78 57 64 70 59 79 

15 27.5 147.5 1.8 68 1.09 1.4 214 347 95 93 72 95 92 81 112 

16 27.5 147.5 2.4 75 1.52 1.3 241 393 94 103 75 83 85 87 73 

17 15 147.5 1.8 65 0.76 1.2 388 671 109 108 82 85 97 90 54 

18 15 147.5 3 67 0.84 1.5 215 357 77 87 71 83 80 81 104 

19 27.5 175 2.4 61 0.88 1.4 247 426 82 81 74 81 84 84 81 

20 27.5 120 2.4 67 0.53 1.1 315 536 113 113 109 108 110 117 68 

Raw flour 58.9 0.20 ND ND ND ND ND ND ND ND ND 34.3 
#Sensory scores (appearance, color, taste, flavor, texture and overall acceptability) are unitless scores showing consumer ratings measured as mm on a 150 mm 
unstructed line scale ancored at dislike extremely(0) and like extremely (150mm),  an=4; bn=6; cn=10; dn=3; en=3; fn=40; gn=6, ND=Not determined 
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Table 4.3: Significant model terms relating extrusion independent variables to sensory, 
physicochemical properties and RBA of resultant flour/porridge 

Independent variable  Model*  R2  
Lack 
of fit #  

Sensory attributes   
Appearance  167.5-0.5x2  0.55 NS 

Color  155-0.37 x2  0.59 NS 

Overall acceptability  146-0.4 x2  0.38 NS 

Pasting properties   
Peak viscosity  1413-45x1-1.3x2-420x3+19.4x1x3  0.64 S 

Final viscosity  
2560-82x1-2.6x2-739x3+35x1x3  

0.66 
S 

Nutritional properties   
Relative Biological 
Availability -583+17x1+2x2+280x3-7x1x3-0.9x2x3 0.57 

NS 

Physical property   

Expansion ratio of extrudate  0.36-0.1 x1+0.008x2  0.78 NS 
*Models and model terms significant at p<0.05; x1-moisture content; x2-Die temp; x3-flow rate; 
#NS-Not Significant; S- Significant 
 
 

Table 4.4: Optimization results showing solutions maximizing desirabilitya 

Solutions Independent Variables Dependent Variables  
Desirability  Moisture 

content 
(%) 

Die 
temperature 
(°C) 

Flow 
rate 
(kg/h) 

Final 
viscosity 
(cp 

 Overall 
Acceptability  

 %RBA 

1  15 120 3 356 102 126 0.81 

2  15 121 3 354 102 125 0.81 

3 15 120 3 355 102 125 0.81 

4  15 123 3 349 101 124 0.81 

5  15 124 3 346 101 124 0.81 

6  15 130 3 330 99 121 0.81 

7  15 130 3 330 99 121 0.81 

8  15 134 3 318 97 118 0.81 
aSelection criteria for the optimization procedure; minimize final viscosity, maximize overall 
acceptability and %RBA while keeping independent variables in range 
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Table 4.5: Validation experiments results 

Run 
No. 

Independent variables Dependent  variables* 
Moisture 

content (%) 
Die 

Temperature 
(oC) 

Flow rate 
(Kg/hr) 

aExpansion ratio bPeak viscosity 
(cP) 

cFinal viscosity 
(cP) 

dRBA (%) 

    Predi
cted  

Experim
ental  

Predi
cted  

Experim
ental  

Predi
cted  

Experim
ental  

Predi
cted  

Experim
ental  

1 15 120 3 1±0 1.1 ±0 197±
29 

329±52 356±
52 

600±81 126±
13 

70±17
#
 

2 19 120 2.8 1.1±0 1.1±0 254±
19 

291±0 453±
33 

523±0 103±
9 

60±8
#
 

an=10; bn=3; cn=3; dn =6; *Predicted=Mean±SEM; Experimental=Mean±SD; #Experimental value is significant 
different from predicted value at P<0.05. 
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Figure 4.1: Contour surface showing relationship between moisture content, feed flow rate and 
peak viscosity of extruded bean flour at the optimal die temperature (120 ⁰C) 
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Figure 4.2: Contour surface showing relationship between moisture content, feed flow rate and 
final viscosity of extruded bean flour at the optimal die temperature (120 ⁰C) 

Design-Expert® Softw are

Relative Biological Value (%)

X1 = A: Moisture Content (%)
X2 = C: Flow  rate (kg/h)

Actual Factor
B: Die Temperature(oC) = 148.24

15.00 18.13 21.25 24.38 27.50

1.80

2.10

2.40

2.70

3.00
Relative Biological Value (%)

A: Moisture Content (%)

C
: 

F
lo

w
 r

at
e 

(k
g/

h)

63.6509

63.6509

73.1328

73.1328

82.6147

82.6147

92.0966

92.0966

101.579

101.579

 
Figure 4.3: Contour surface showing relationship between moisture content, feed flow rate and 
RBA of extruded bean flour at constant die temperature (148.24 °C). 
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Figure 4.4: Contour surface showing relationship between moisture content, die temperature, and 
expansion ratio of bean flour at constant feed flow rate (2.4 kg/hr). 
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Figure 4.5: Overlay plot showing optimal (un-shaded) region maximizing overall acceptability 
and RBA at minimum final paste viscosity 
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CHAPTER 5. GENERAL CONCLUSIONS 

The current study was carried out with the objectives of screening Ugandan bean varieties for 

iron bioavailability and to determine effect of extrusion cooking on iron bioavailability.  The first 

part of the study demonstrated that iron bioavailability, as determined by in vitro Caco-2 cell 

culture, varied widely in the bean varieties, with white seed coat varieties having significantly 

higher iron bioavailability than colored seed coat ones.  Multiple regression modeling showed 

that only polyphenol and iron content were significant factors influencing iron bioavailability in 

this particular set of beans.  Similar results have been shown in other studies (Tako and Glahn, 

2010; Hu et al., 2003).  Linear effects of polyphenol and iron content decreased iron 

bioavailability while their interaction increased it.  The negative effect of iron content on iron 

bioavailability highlights challenges in breeding for high iron bean varieties in the presence of 

high polyphenol and phytates content (Donangelo et al., 2003; Petry et al., 2010).  Ferritin and 

phytic acid were not significant factors in this study but could potentially influence iron 

bioavailability.  Over expression of ferritin in plants is a current area of interest with encouraging 

results showing a positive correlation with iron content and bioavailability (Aluru et al., 2012).  

Western blot quantification of ferritin used in this study showed very high variation and may 

have led to this lack of significance.  Therefore, more accurate assays need to be explored to 

further study this factor.  Effect of phytates was not significant in this study but phytates are well 

known inhibitors of iron bioavailability.  The wide variation in the composition of the various 

factors studied shows potential for breeding for these traits.  However, it is evident that iron 
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biofortification should aim at reducing polyphenol and phytates and maximizing ferritin content. 

Low phytate varieties have already been developed (Campion et al., 2009).  

 

The second study aimed at optimizing extrusion cooking process variables with respect to iron 

bioavailability of NABE6, the small white seed coat variety from Uganda with the highest iron 

bioavailability (from study one).  Extrusion cooking increased iron bioavailability of NABE6 

bean variety 1.5-10 fold, reduced pasting viscosity and produced consumer acceptable flours.  

The linear effect of die temperature was significant in all significant models while the effect of 

moisture content and feed flow rate were only significant in pasting viscosity and iron 

bioavailability.  Optimal processing conditions were 15% moisture content, 120 °C die 

temperature and 3 kg/hr feed flow rate to give a relative bioavailability score.  The optimal 

extrudate had RBA (124%) which was 3.5 fold higher than that of the conventionally cooked 

NABE6.  However, a significant increase in iron content with extrusion showed probable 

contamination from extruder parts which may have contributed to increase in iron bioavailability 

(Alonso et al., 2001).  Extrusion cooking did not reduce polyphenol content of beans thus 

maintaining bioactive properties of beans (Korus et al., 2007).  On the other hand, household 

processing technologies (soaking, germination, malting, etc.) have been shown to enhance iron 

bioavailability but at the expense of polyphenolic compounds.  However, if iron bioavailability 

can be enhanced while maintaining functionality of beans, extrusion cooking will go a long way 

in enhancing nutritional value of beans.  The importance of extrusion cooking in enhancing iron 

bioavailability shouldn’t be seen to replace biofortification efforts since as an energy intensive 

process, it may not reach the rural poor of the world in most need of improved iron intake.  Also, 
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it is not clear if this technology will be valid for all bean types (especially colored seed coat 

ones) and if products will be acceptable across different populations.  However, it can be 

expected that modification of bean matrix to more readily release iron on digestion, change in 

polyphenolic profile and reduction in higher inositol phosphates could improve iron 

bioavailability of these beans as well.  More work is warranted to elucidate these issues, and also 

determine if heat modified polyphenols possess bioactive properties.  Extruders that are regularly 

used for extruding beans ought to be used in subsequent studies to limit contamination from iron 

containing parts.  Finally, stable isotope studies and human feeding trials are necessary to 

corroborate the beneficial effects of extrusion cooking.  In conclusion, this study has provided 

proof-of concept of the considerable potential of extrusion cooking for combating iron deficiency 

in populations dependent on beans for their iron nutrition. 

 

The two studies taken together showed that screening for high bioavailability bean varieties and 

applying appropriate processing conditions could significantly improve the contribution of 

common beans to iron nutrition.  
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APPENDICES 

APPENDIX I. INFORMED CONSENT FORM PROVIDED TO EACH 

PANELIST AND APPROVED BY THE INSTITUTIONAL REVIEW 

BOARD OF IOWA STATE UNIVERSITY AND UGANDA NATIONAL 

COUNCIL OF SCIENCE AND TECHNOLOGY 

Informed Consent Form 
 

“Sensory Evaluation of Extruded Bean Porridge and Soup” 

Researcher: Martin Mutambuka Project Co-Principal Investigators: Dr. Manju Reddy, Dr. Suzanne 
Hendrich, and Dr. Patricia Murphy, Department of Food Science and Human Nutrition, ISU; Dr. Dorothy 
Nakimbugwe, Makerere University. 
 
Participation 
I am asking for your voluntary participation in a project that involves sensory evaluation of bean based 
porridge and soups. Please read the information below about the project and feel free to ask any questions. 
If you agree to participate, please indicate by signing below. You will be given a copy of this consent form 
to keep. Participation in this study is completely voluntary. If you decide to participate, you may decide 
not to answer any specific question that makes you feel uncomfortable and you may stop participating at 
any time. If you decide to not participate in the study or leave the study early, it will not result in any 
penalty. There are no foreseeable risks from participating in this study. There will be no direct benefits to 
you from participating in this study. However, information gained may benefit society by being utilized to 
improve the nutritional quality of bean based meals. 
 
Procedures 
If you decide to participate, you will be part of a 140 people consumer panel. Each panelist will be 
presented with a maximum of 6 porridge or soup samples to taste and responses will be recorded on a nine 
point hedonic scale provided at the time of tasting. All testing sessions will be held in sensory evaluation 
booths housed in the Department of Food science and Technology, Makerere University. Bottled mineral 
water will be provided for rinsing between samples. 
 
Confidentiality 
Your identity will be kept anonymous. Information obtained about this study will be kept confidential to 
the extent permitted by applicable laws and regulations and will not be made publicly available. The 
information will be stored in a closed cabinet and only accessed by members on the research team. 
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“Federal government regulatory agencies, the Collaborative Research Support Program, Auditing 
departments of Iowa State University Institutional Review Board (a committee that reviews and approves 
research studies with human subjects) may inspect and/or copy your records for quality assurance and 
analysis. These records may contain private information.”  
 
Questions 
If you have any questions about this study, feel free to contact;  Dr. Dorothy Nakimbugwe (0782246089) 
or the graduate student, Martin Mutambuka (0782367118). 
Signature 
By signing this form, I am attesting that I have read and understood the information above and I freely 
give my consent/assent to participate. 
Signature:______________________________________   Date_____________________ 
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APPENDIX II. DEMOGRAPHIC INFORMATION QUESTIONNAIRE 

PROVIDED TO ALL SENSORY PANELISTS 

CONSUMER QUESTIONNAIRE 
Please check the appropriate answer for the following demographic information: 
 
Panelist No……….. 
1. Sex _____male _____female 
 
2. Age group  
_____18 – 25 years  
_____26 – 35 years  
_____36 – 45 years  
_____46 – 55 years  
_____56 – 65 years  
 
3. Do you have any food allergies to beans? ____yes _____no 
 
Please answer the following questions. There are no right or wrong answers. We want to know about you and what 
you think. Please ask if you have any questions! 
4. Do you purchase any flours for making porridge? _____yes _____no 
5. How often do you consume porridges? 
_____ I do not consume porridges 
_____ Occasionally 
_____ At least once per month 
_____ At least 2-3 times per month 
_____ At least once per week 
_____ Two to three times per week 
_____ Four or more times per week 
6. If you consume porridges, what products do you eat? Check all that apply: 
_____Maize  _____Millet _____Soya  _____Rice _____composites (mixtures of flours) 
_____ Other (specify)______________ 
 
7. What factors influence your choice of porridge flour? Check all that apply: 
_______Tradition  _____Price  _____Texture   _____Flavor  _____Health  
 _____Availability 
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APPENDIX III. SENSORY EVALUATION BALLOTS USED FOR 

CONSUMER ACCEPTABILITY STUDIES 

Sensory evaluation ballot 
 
Panelist No._______________________ Sample No._____________ 
 

You are provided with a sample of porridge. Please observe and record your liking for the appearance and color on the line scale 
below. Use provided spoon and place sufficient sample in your mouth. Taste the porridges and rate them against the given scale by 
placing a vertical mark at the appropriate position on the line scale for taste, aroma/flavor, texture and overall acceptability. Please 
evaluate the products in the order in which they are presented. Use the water and biscuits provided to rinse your mouth before and 

after tasting each sample and between samples.  
ANSWER ALL QUESTIONS. We want to know what you think!! 
If you have any questions, please ask the study coordinators. 

 
NB: if you have any further comment about the product, please note it on the space provided below the line. 

1. Appearance  

Dislike extremely                                                Like extremely  

  

Comment……………………………………………………………………………………………………………………………………………….. 

2. Color  

 

Dislike extremely                      Like extremely  

Comment……………………………………………………………………………………………………………………………………………….. 

3. Taste   

 

Dislike extremely                       Like extremely  

Comment……………………………………………………………………………………………………………………………………………….. 

4. Flavor/aroma 

 

Dislike extremely                                                      Like extremely  

 Comment……………………………………………………………………………………………………………………………………………….. 
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5. Texture  

 

Dislike extremely                                                      Like extremely  

 Comment……………………………………………………………………………………………………………………………………………….. 

6. Overall acceptability  

 

Dislike extremely                         Like extremely  

 Comment………………………………………………………………………………………………………………………………………………. 
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